Suppr超能文献

用于揭示AlN和BN纳米环对SF₆分解气体(HS、SO、SOF₂和SOF₄)独特检测和传感潜力的首个理论框架:迈向高压电力系统中的实时气体传感。

First theoretical framework of AlN and BN nanorings for unveiling their unique detection and sensing potential for SF decomposition gases (HS, SO, SOF, and SOF): toward real-time gas sensing in high-voltage power systems.

作者信息

Rizwan Hafiz Ali, Khan Muhammad Usman, Anwar Abida, Alharthi Sarah, Amin Mohammed A

机构信息

Department of Chemistry, University of Okara Okara-56300 Pakistan

Department of Chemistry, College of Science, Taif University Taif 21944 Saudi Arabia.

出版信息

RSC Adv. 2025 Jun 12;15(25):20020-20039. doi: 10.1039/d5ra03312h. eCollection 2025 Jun 10.

Abstract

Sulfur hexafluoride (SF) is widely used as an insulating gas in high-voltage electrical equipment due to its excellent dielectric properties. However, its decomposition under electrical discharges can generate toxic and corrosive byproducts such as HS, SO, SOF, and SOF, which pose serious threats to insulation integrity and the reliability of power systems. Rapid and accurate sensing and detection of these decomposition products is thus critical for fault diagnosis and preventative maintenance. Despite various experimental advances, the development of efficient, sensitive, and real-time nanomaterial-based gas sensors remains a challenge. In this study, we systematically investigate the sensing capabilities of AlN (AlN) and BN (BN) nanorings for SF decomposition gases using density functional theory (DFT) with the B3LYP-D3/6-31G(d,p) method. Different key electronic and structural evaluations including adsorption energy ( ) measurements, energy gap ( ) determinations, natural bond orbital (NBO), density of states (DOS), thermodynamic studies, atom in molecules (AIM), non-covalent interactions (NCI) and sensing mechanism were carried out to assess the sensing performance. The adsorption of these gases on AlN nanoring results in higher adsorption energies ranging from -8.690 kcal mol to -38.221 kcal mol while these gases are weakly adsorbed on BN nanorings (-7.041 to -7.855 kcal mol). The reduction of the energy gap is observed after the adsorption of SF decomposed gases on both rings. The most notable reduction is observed after the adsorption of SO on AlN (1.103 eV) and BN (2.883 eV) nanorings. The study demonstrated that SO showed maximum sensitivity on BN nanorings (0.9797), accompanied by a substantial work function increase of 36.715% which confirmed BN as the most reactive material for SO detection. The adsorption of SF on AlN and BN nanorings produced fast recovery times, which shows their potential for real-time sensor applications, with the increase in temperature further decreasing the recovery time. Both AlN and BN nanorings showed better detection performance for SO, while AlN nanorings proved more efficient for SOF and SOF detection because of their superior electrical conductivity, better charge transfer, and quicker recovery times. These findings recommend the integration of AlN and BN nanorings in advanced gas sensor technologies for real-time, reliable detection of SF decomposition gases, crucial for enhancing the safety and efficiency of high-voltage power systems.

摘要

六氟化硫(SF₆)因其优异的介电性能而被广泛用作高压电气设备中的绝缘气体。然而,其在放电情况下的分解会产生有毒和腐蚀性副产物,如HS、SO、SOF₂和SOF₄,这对绝缘完整性和电力系统的可靠性构成严重威胁。因此,快速准确地传感和检测这些分解产物对于故障诊断和预防性维护至关重要。尽管在实验方面取得了各种进展,但开发高效、灵敏和实时的基于纳米材料的气体传感器仍然是一项挑战。在本研究中,我们使用密度泛函理论(DFT)和B3LYP-D3/6-31G(d,p)方法系统地研究了AlN(氮化铝)和BN(氮化硼)纳米环对SF₆分解气体的传感能力。进行了不同的关键电子和结构评估,包括吸附能(Ead)测量、能隙(Eg)测定、自然键轨道(NBO)、态密度(DOS)、热力学研究、分子中的原子(AIM)、非共价相互作用(NCI)和传感机制,以评估传感性能。这些气体在AlN纳米环上的吸附导致更高的吸附能,范围从 -8.690 kcal/mol到 -38.221 kcal/mol,而这些气体在BN纳米环上的吸附较弱(-7.041到 -7.855 kcal/mol)。在SF₆分解气体吸附在两个环上后,观察到能隙减小。在SO吸附在AlN(1.103 eV)和BN(2.883 eV)纳米环上后,观察到最显著的能隙减小。该研究表明,SO在BN纳米环上表现出最大灵敏度(0.9797),同时功函数大幅增加36.715%,这证实BN是检测SO最具反应性的材料。SF₆在AlN和BN纳米环上的吸附产生了快速的恢复时间,这表明它们在实时传感器应用中的潜力,随着温度升高,恢复时间进一步缩短。AlN和BN纳米环对SO都表现出更好的检测性能,而AlN纳米环由于其优异的导电性、更好的电荷转移和更快的恢复时间,在检测SOF₂和SOF₄方面被证明更有效。这些发现建议将AlN和BN纳米环集成到先进的气体传感器技术中,以实时、可靠地检测SF₆分解气体,这对于提高高压电力系统的安全性和效率至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/443f/12159733/c066eceb9d46/d5ra03312h-f3.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验