Suppr超能文献

贝叶斯统计方法在临床试验设计中的应用:以一项针对膝骨关节炎患者进行中期无效性评估的2期试验为例

Applications of Bayesian statistical methodology to clinical trial design: A case study of a phase 2 trial with an interim futility assessment in patients with knee osteoarthritis.

作者信息

Smith Claire L, Jin Yan, Raddad Eyas, McNearney Terry A, Ni Xiao, Monteith David, Brown Roger, Deeg Mark A, Schnitzer Thomas

机构信息

Eli Lilly and Company, Erl Wood Manor, Windlesham, UK.

Eli Lilly and Company, Indianapolis, IN, USA.

出版信息

Pharm Stat. 2019 Jan;18(1):39-53. doi: 10.1002/pst.1906. Epub 2018 Oct 15.

Abstract

Development of new pharmacological treatments for osteoarthritis that address unmet medical needs in a competitive market place is challenging. Bayesian approaches to trial design offer advantages in defining treatment benefits by addressing clinically relevant magnitude of effects relative to comparators and in optimizing efficiency in analysis. Such advantages are illustrated by a motivating case study, a proof of concept, and dose finding study in patients with osteoarthritis. Patients with osteoarthritis were randomized to receive placebo, celecoxib, or 1 of 4 doses of galcanezumab. Primary outcome measure was change from baseline WOMAC pain after 8 weeks of treatment. Literature review of clinical trials with targeted comparator therapies quantified treatment effects versus placebo. Two success criteria were defined: one to address superiority to placebo with adequate precision and another to ensure a clinically relevant treatment effect. Trial simulations used a Bayesian dose response and longitudinal model. An interim analysis for futility was incorporated. Simulations indicated the study had ≥85% power to detect a 14-mm improvement and ≤1% risk for a placebo-like drug to pass. The addition of the second success criterion substantially reduced the risk of an inadequate, weakly efficacious drug proceeding to future development. The study was terminated at the interim analysis due to inadequate analgesic efficacy. A Bayesian approach using probabilistic statements enables clear understanding of success criteria, leading to informed decisions for study conduct. Incorporating an interim analysis can effectively reduce sample size, save resources, and minimize exposure of patients to an inadequate treatment.

摘要

在竞争激烈的市场中开发能够满足未被满足的医疗需求的骨关节炎新药理疗法具有挑战性。贝叶斯试验设计方法在通过解决相对于对照的临床相关效应大小来定义治疗益处以及优化分析效率方面具有优势。骨关节炎患者的一个激励性案例研究、概念验证和剂量探索研究说明了这些优势。骨关节炎患者被随机分配接受安慰剂、塞来昔布或4种剂量的加卡奈珠单抗中的一种。主要结局指标是治疗8周后WOMAC疼痛相对于基线的变化。对采用靶向对照疗法的临床试验进行文献综述,量化了与安慰剂相比的治疗效果。定义了两个成功标准:一个是精确地证明优于安慰剂,另一个是确保具有临床相关的治疗效果。试验模拟使用了贝叶斯剂量反应和纵向模型。纳入了无效性的期中分析。模拟表明该研究有≥85%的把握度检测到14毫米的改善,且类似安慰剂的药物通过的风险≤1%。添加第二个成功标准大幅降低了疗效不足、效果微弱的药物进入后续研发的风险。由于镇痛效果不足,该研究在期中分析时终止。使用概率陈述的贝叶斯方法能够清晰理解成功标准,从而为研究实施做出明智决策。纳入期中分析可以有效减少样本量、节省资源并使患者暴露于无效治疗的风险最小化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验