Suppr超能文献

依赖于一种新颖的 DNA 识别机制的高度特异性、细胞周期调控的甲基转移酶。

The highly specific, cell cycle-regulated methyltransferase from relies on a novel DNA recognition mechanism.

机构信息

From the Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106

From the Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106.

出版信息

J Biol Chem. 2018 Dec 7;293(49):19038-19046. doi: 10.1074/jbc.RA118.005212. Epub 2018 Oct 15.

Abstract

Two DNA methyltransferases, Dam and β-class cell cycle-regulated DNA methyltransferase (CcrM), are key mediators of bacterial epigenetics. CcrM from the bacterium (CcrM , methylates adenine at 5'-GANTC-3') displays 10-10-fold sequence discrimination against noncognate sequences. However, the underlying recognition mechanism is unclear. Here, CcrM activity was either improved or mildly attenuated with substrates having one to three mismatched bp within or adjacent to the recognition site, but only if the strand undergoing methylation is left unchanged. By comparison, single-mismatched substrates resulted in up to 10-fold losses of activity with α (Dam) and γ-class (M.HhaI) DNA methyltransferases. We found that CcrM has a greatly expanded DNA-interaction surface, covering six nucleotides on the 5' side and eight nucleotides on the 3' side of its recognition site. Such a large interface may contribute to the enzyme's high sequence fidelity. CcrM displayed the same sequence discrimination with single-stranded substrates, and a surprisingly large (>10-fold) discrimination against ssRNA was largely due to the presence of two or more riboses within the cognate (DNA) site but not outside the site. Results from C-terminal truncations and point mutants supported our hypothesis that the recently identified C-terminal, 80-residue segment is essential for dsDNA recognition but is not required for single-stranded substrates. CcrM orthologs from and share some of these newly discovered features of the enzyme, suggesting that the recognition mechanism is conserved. In summary, CcrM uses a previously unknown DNA recognition mechanism.

摘要

两种 DNA 甲基转移酶,Dam 和β类细胞周期调控 DNA 甲基转移酶(CcrM),是细菌表观遗传学的关键介质。来自细菌的 CcrM(CcrM)将腺嘌呤在 5'-GANTC-3'处甲基化,对非同源序列显示出 10-10 倍的序列辨别能力。然而,潜在的识别机制尚不清楚。在这里,CcrM 活性要么在识别位点内或附近具有一个到三个错配碱基的底物上得到改善或轻度减弱,但前提是正在甲基化的链保持不变。相比之下,具有一个错配碱基的底物会导致 α(Dam)和γ类(M.HhaI)DNA 甲基转移酶的活性损失高达 10 倍。我们发现 CcrM 具有一个大大扩展的 DNA 相互作用表面,覆盖其识别位点的 5'侧的六个核苷酸和 3'侧的八个核苷酸。如此大的界面可能有助于酶的高序列保真度。CcrM 对单链底物显示出相同的序列辨别能力,并且对 ssRNA 的惊人大(>10 倍)的辨别主要是由于在同源(DNA)位点内存在两个或更多核糖,但不在位点外。C 末端截断和点突变体的结果支持了我们的假设,即最近鉴定的 C 末端 80 个残基片段对于 dsDNA 识别是必需的,但对于单链底物不是必需的。来自 和 的 CcrM 同源物共享该酶的一些新发现的特征,这表明识别机制是保守的。总之,CcrM 使用了以前未知的 DNA 识别机制。

相似文献

引用本文的文献

1
Quinoline-based compounds can inhibit diverse enzymes that act on DNA.喹啉类化合物能够抑制多种作用于DNA的酶。
Cell Chem Biol. 2024 Dec 19;31(12):2112-2127.e6. doi: 10.1016/j.chembiol.2024.09.007. Epub 2024 Oct 21.

本文引用的文献

2
DNA methyltransferases and epigenetic regulation in bacteria.细菌中的 DNA 甲基转移酶和表观遗传调控。
FEMS Microbiol Rev. 2016 Sep;40(5):575-91. doi: 10.1093/femsre/fuw023. Epub 2016 Jul 29.
4
The global regulatory architecture of transcription during the Caulobacter cell cycle.柄杆菌细胞周期中转录的全球调控架构。
PLoS Genet. 2015 Jan 8;11(1):e1004831. doi: 10.1371/journal.pgen.1004831. eCollection 2015 Jan.
5
Structural and functional coordination of DNA and histone methylation.DNA 和组蛋白甲基化的结构和功能协调。
Cold Spring Harb Perspect Biol. 2014 Aug 1;6(8):a018747. doi: 10.1101/cshperspect.a018747.
8
Origins of specificity in protein-DNA recognition.蛋白质与 DNA 识别特异性的起源。
Annu Rev Biochem. 2010;79:233-69. doi: 10.1146/annurev-biochem-060408-091030.
10
Coupling sequence-specific recognition to DNA modification.将序列特异性识别与DNA修饰相结合。
J Biol Chem. 2009 Aug 21;284(34):22690-6. doi: 10.1074/jbc.M109.015966. Epub 2009 Jun 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验