Schierwagen A
J Hirnforsch. 1986;27(6):679-90.
A segmental cable model of tecto-reticulo-spinal neurons of cat superior colliculus was constructed, based on detailed anatomical measurements from three neurons. The calculated membrane resistance for which the model best fitted the measured input resistance was 2,300-3,000 omega cm2. Electrotonic length of dendrites fell under 0.59-1.20 and 0.52-1.05 length constants, while the mean electrotonic length for the three cells averaged 0.91, 0.79, 0.81 and 0.80, 0.70, 0.71 (for sealed-end and open-end cable termination, respectively). Dendrite-to-soma conductance ratios averaged 16.0, 10.7, 7.5 and 21.3, 14.1, 11.4 for the two different end conditions, respectively. Synaptic efficacy was estimated by the transfer of steady-state voltage or current reaching the soma from distal dendritic locations. While voltage transfer was less than 1%, almost 60% of injected current (or charge) reached the soma. Analysis of voltage transients recorded experimentally in TRSNs demonstrated considerable difference between parameters derived from either equivalent-cylinder model or segmental cable model. The obvious deviations of TRSNs both in anatomical and electrotonic respect from the assumptions of the equivalent-cylinder model indicate that the detailed cable model will give a more appropriate description of these neurons. The significance of the estimated electrotonic parameters for the particular burst generation mechanism of TRSNs is discussed.
基于对三只猫上丘的顶盖-网状-脊髓神经元的详细解剖测量,构建了一个节段性电缆模型。该模型最佳拟合实测输入电阻时计算出的膜电阻为2300 - 3000Ω·cm²。树突的电紧张长度在0.59 - 1.20和0.52 - 1.05个长度常数范围内,而这三个细胞的平均电紧张长度分别为0.91、0.79、0.81和0.80、0.70、0.71(分别对应密封端和开放端电缆终端)。对于两种不同的终端条件,树突与胞体的电导比分别平均为16.0、10.7、7.5和21.3、14.1、11.4。通过从树突远端位置到达胞体的稳态电压或电流传递来估计突触效能。虽然电压传递小于1%,但几乎60%的注入电流(或电荷)到达了胞体。对在顶盖-网状-脊髓神经元中实验记录的电压瞬变的分析表明,从等效圆柱体模型或节段性电缆模型得出的参数之间存在显著差异。顶盖-网状-脊髓神经元在解剖学和电紧张方面明显偏离等效圆柱体模型的假设,这表明详细的电缆模型将对这些神经元给出更合适的描述。文中讨论了估计的电紧张参数对于顶盖-网状-脊髓神经元特定爆发产生机制的意义。