Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, 52062 Aachen, Germany.
Phys Chem Chem Phys. 2018 Oct 31;20(42):27125-27130. doi: 10.1039/c8cp05455j.
Superconductivity in different phases of lithium (Li) under high pressure has been widely studied both experimentally and theoretically, whereas detailed first-principles investigation of the microscopic mechanism has been limited to the fcc and bcc phases below 40 GPa. Here, we study the electron-phonon interaction and superconductivity in one interesting high-pressure phase of Li (cI16) between 45 GPa and 76 GPa using first-principles calculations and the Wannier interpolation technique. The nature of superconductivity in the cI16 phase is examined by solving the Eliashberg equations, and the superconducting transition temperature Tc of the Li-cI16 in the range of 45-76 GPa is calculated. We analyze the electron-phonon coupling (EPC) effect on the electronic bands, phonon dispersions, the Fermi surface topology (nesting ξq) and the Eliashberg spectral function α2F(ω) at different pressures. In particular, α2F(ω) shows an anomalous trend in spectral weight at a low-frequency region with increasing pressure, which originates from the reduction of the nesting function ξq. The trend of the EPC strength from each phonon branch with pressure is also presented in detail. Another interesting phenomenon from our calculation is the tendency of a metal-to-semiconductor transition with structural optimization at different pressures, which have been reported by previous experiments. Our theoretical studies demonstrate clearly the mechanism behind the anomalous superconducting properties of the high-pressure Li-cI16 phase.
高压下不同相态的锂(Li)的超导性已经在实验和理论上得到了广泛研究,然而,对于微观机制的详细第一性原理研究仅限于 40 GPa 以下的 fcc 和 bcc 相。在这里,我们使用第一性原理计算和 Wanier 插值技术研究了 45 GPa 至 76 GPa 之间有趣的高压相 Li(cI16)中的电子-声子相互作用和超导性。通过求解 Eliashberg 方程来研究 cI16 相超导的性质,并计算了 Li-cI16 在 45-76 GPa 范围内的超导转变温度 Tc。我们分析了电子-声子耦合(EPC)效应对电子能带、声子色散、费米面拓扑结构(嵌套 ξq)和不同压力下的 Eliashberg 谱函数α2F(ω)的影响。特别是,α2F(ω)在随着压力增加的低频区域显示出反常的谱权重趋势,这源于嵌套函数 ξq 的减少。我们还详细介绍了每个声子分支随压力的 EPC 强度趋势。另一个有趣的现象来自我们的计算,即在不同压力下结构优化时,从金属到半导体的转变趋势,这已被先前的实验报道。我们的理论研究清楚地展示了高压 Li-cI16 相异常超导性质背后的机制。