Suppr超能文献

同时监测脑血流动力学和血压的可穿戴技术的发展。

Technology Development for Simultaneous Wearable Monitoring of Cerebral Hemodynamics and Blood Pressure.

出版信息

IEEE J Biomed Health Inform. 2019 Sep;23(5):1952-1963. doi: 10.1109/JBHI.2018.2876087. Epub 2018 Oct 15.

Abstract

For many cerebrovascular diseases both blood pressure (BP) and hemodynamic changes are important clinical variables. In this paper, we describe the development of a novel approach to noninvasively and simultaneously monitor cerebral hemodynamics, BP, and other important parameters at high temporal resolution (250 Hz sampling rate). In this approach, cerebral hemodynamics are acquired using near infrared spectroscopy based sensors and algorithms, whereas continuous BP is acquired by superficial temporal artery tonometry with pulse transit time based drift correction. The sensors, monitoring system, and data analysis algorithms used in the prototype for this approach are reported in detail in this paper. Preliminary performance tests demonstrated that we were able to simultaneously and noninvasively record and reveal cerebral hemodynamics and BP during people's daily activity. As examples, we report dynamic cerebral hemodynamic and BP fluctuations during postural changes and micturition. These preliminary results demonstrate the feasibility of our approach, and its unique power in catching hemodynamics and BP fluctuations during transient symptoms (such as syncope) and revealing the dynamic features of related events.

摘要

对于许多脑血管疾病,血压(BP)和血液动力学变化都是重要的临床变量。在本文中,我们描述了一种新的方法,该方法可以非侵入性地同时监测大脑血液动力学、BP 和其他重要参数,具有高时间分辨率(250Hz 采样率)。在这种方法中,使用近红外光谱传感器和算法来获取大脑血液动力学,而使用颞浅动脉张力测量法通过脉搏传输时间进行连续 BP 测量,并进行漂移校正。本文详细介绍了该方法原型中使用的传感器、监测系统和数据分析算法。初步性能测试表明,我们能够在人们的日常活动中同时非侵入性地记录和揭示大脑血液动力学和 BP。作为示例,我们报告了在姿势变化和排尿过程中动态的大脑血液动力学和 BP 波动。这些初步结果证明了我们方法的可行性,以及它在捕捉短暂症状(如晕厥)期间的血液动力学和 BP 波动以及揭示相关事件的动态特征方面的独特优势。

相似文献

1
Technology Development for Simultaneous Wearable Monitoring of Cerebral Hemodynamics and Blood Pressure.
IEEE J Biomed Health Inform. 2019 Sep;23(5):1952-1963. doi: 10.1109/JBHI.2018.2876087. Epub 2018 Oct 15.
3
BioWatch - a wrist watch based signal acquisition system for physiological signals including blood pressure.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:2286-9. doi: 10.1109/EMBC.2014.6944076.
4
Very-low-frequency oscillations of cerebral hemodynamics and blood pressure are affected by aging and cognitive load.
Neuroimage. 2014 Jan 15;85 Pt 1:608-15. doi: 10.1016/j.neuroimage.2013.04.107. Epub 2013 May 6.
6
Evaluation of transit time-based models in wearable central aortic blood pressure estimation.
Biomed Phys Eng Express. 2020 Mar 13;6(3):035006. doi: 10.1088/2057-1976/ab7a55.
7
A wireless, skin-interfaced biosensor for cerebral hemodynamic monitoring in pediatric care.
Proc Natl Acad Sci U S A. 2020 Dec 15;117(50):31674-31684. doi: 10.1073/pnas.2019786117. Epub 2020 Nov 30.
8
Arterial Pressure, Heart Rate, and Cerebral Hemodynamics Across the Adult Life Span.
Hypertension. 2017 Apr;69(4):712-720. doi: 10.1161/HYPERTENSIONAHA.116.08986. Epub 2017 Feb 13.
9
Distilling clinically interpretable information from data collected on next-generation wearable sensors.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:1729-32. doi: 10.1109/IEMBS.2011.6090495.
10
Toward Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory and Practice.
IEEE Trans Biomed Eng. 2015 Aug;62(8):1879-901. doi: 10.1109/TBME.2015.2441951. Epub 2015 Jun 5.

引用本文的文献

1
Advancements in Bio-Integrated Flexible Electronics for Hemodynamic Monitoring in Cardiovascular Healthcare.
Adv Sci (Weinh). 2025 Jul;12(25):e2415215. doi: 10.1002/advs.202415215. Epub 2025 Apr 25.
2
Home-based monitoring of cerebral oxygenation in response to postural changes using near-infrared spectroscopy.
Geroscience. 2024 Dec;46(6):6331-6346. doi: 10.1007/s11357-024-01241-w. Epub 2024 Jun 18.
3
Wearable Wireless Body Area Networks for Medical Applications.
Comput Math Methods Med. 2021 Apr 24;2021:5574376. doi: 10.1155/2021/5574376. eCollection 2021.

本文引用的文献

1
Noninvasive and continuous blood pressure measurement via superficial temporal artery tonometry.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:3382-3385. doi: 10.1109/EMBC.2016.7591453.
3
Continuous Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio.
IEEE Trans Biomed Eng. 2016 May;63(5):964-972. doi: 10.1109/TBME.2015.2480679. Epub 2015 Sep 22.
4
A survey on signals and systems in ambulatory blood pressure monitoring using pulse transit time.
Physiol Meas. 2015 Mar;36(3):R1-26. doi: 10.1088/0967-3334/36/3/R1. Epub 2015 Feb 19.
6
Unobtrusive sensing and wearable devices for health informatics.
IEEE Trans Biomed Eng. 2014 May;61(5):1538-54. doi: 10.1109/TBME.2014.2309951.
7
Depth sensitivity and source-detector separations for near infrared spectroscopy based on the Colin27 brain template.
PLoS One. 2013 Aug 1;8(8):e66319. doi: 10.1371/journal.pone.0066319. Print 2013.
8
A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology.
Neuroimage. 2014 Jan 15;85 Pt 1:6-27. doi: 10.1016/j.neuroimage.2013.05.004. Epub 2013 May 16.
9
Scalp and skull influence on near infrared photon propagation in the Colin27 brain template.
Neuroimage. 2014 Jan 15;85 Pt 1:136-49. doi: 10.1016/j.neuroimage.2013.04.090. Epub 2013 May 7.
10
A new noninvasive device for continuous arterial blood pressure monitoring in the superficial temporal artery.
Physiol Meas. 2013 Apr;34(4):407-21. doi: 10.1088/0967-3334/34/4/407. Epub 2013 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验