Neural Systems Group, Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts, USA.
PLoS One. 2013 Aug 1;8(8):e66319. doi: 10.1371/journal.pone.0066319. Print 2013.
Understanding the spatial and depth sensitivity of non-invasive near-infrared spectroscopy (NIRS) measurements to brain tissue-i.e., near-infrared neuromonitoring (NIN) - is essential for designing experiments as well as interpreting research findings. However, a thorough characterization of such sensitivity in realistic head models has remained unavailable. In this study, we conducted 3,555 Monte Carlo (MC) simulations to densely cover the scalp of a well-characterized, adult male template brain (Colin27). We sought to evaluate: (i) the spatial sensitivity profile of NIRS to brain tissue as a function of source-detector separation, (ii) the NIRS sensitivity to brain tissue as a function of depth in this realistic and complex head model, and (iii) the effect of NIRS instrument sensitivity on detecting brain activation. We found that increasing the source-detector (SD) separation from 20 to 65 mm provides monotonic increases in sensitivity to brain tissue. For every 10 mm increase in SD separation (up to ~45 mm), sensitivity to gray matter increased an additional 4%. Our analyses also demonstrate that sensitivity in depth (S) decreases exponentially, with a "rule-of-thumb" formula S=0.75*0.85(depth). Thus, while the depth sensitivity of NIRS is not strictly limited, NIN signals in adult humans are strongly biased towards the outermost 10-15 mm of intracranial space. These general results, along with the detailed quantitation of sensitivity estimates around the head, can provide detailed guidance for interpreting the likely sources of NIRS signals, as well as help NIRS investigators design and plan better NIRS experiments, head probes and instruments.
了解非侵入性近红外光谱(NIRS)测量对脑组织的空间和深度灵敏度 - 即近红外神经监测(NIN) - 对于设计实验以及解释研究结果至关重要。然而,在现实的头部模型中,这种灵敏度的彻底特征化仍然不可用。在这项研究中,我们进行了 3555 次蒙特卡罗(MC)模拟,以密集覆盖一个特征良好的成年男性模板脑(Colin27)的头皮。我们旨在评估:(i)NIRS 对脑组织的空间灵敏度分布作为源-探测器分离的函数,(ii)NIRS 对这种现实和复杂头部模型中脑组织的深度灵敏度,以及(iii)NIRS 仪器灵敏度对检测大脑激活的影响。我们发现,将源-探测器(SD)分离从 20 毫米增加到 65 毫米会提供对脑组织的敏感性的单调增加。对于 SD 分离每增加 10 毫米(最多约 45 毫米),对灰质的灵敏度增加另外 4%。我们的分析还表明,深度灵敏度(S)呈指数下降,“经验法则”公式为 S=0.75*0.85(深度)。因此,虽然 NIRS 的深度灵敏度没有严格限制,但成人的 NIN 信号强烈偏向颅内空间的最外层 10-15 毫米。这些一般结果,以及头部周围灵敏度估计的详细定量,可以为解释 NIRS 信号的可能来源提供详细指导,并帮助 NIRS 研究人员设计和规划更好的 NIRS 实验、探头和仪器。