Tang Peng, Wang Xinggang, Bai Song, Shen Wei, Bai Xiang, Liu Wenyu, Yuille Alan
IEEE Trans Pattern Anal Mach Intell. 2020 Jan;42(1):176-191. doi: 10.1109/TPAMI.2018.2876304. Epub 2018 Oct 16.
Weakly Supervised Object Detection (WSOD), using only image-level annotations to train object detectors, is of growing importance in object recognition. In this paper, we propose a novel deep network for WSOD. Unlike previous networks that transfer the object detection problem to an image classification problem using Multiple Instance Learning (MIL), our strategy generates proposal clusters to learn refined instance classifiers by an iterative process. The proposals in the same cluster are spatially adjacent and associated with the same object. This prevents the network from concentrating too much on parts of objects instead of whole objects. We first show that instances can be assigned object or background labels directly based on proposal clusters for instance classifier refinement, and then show that treating each cluster as a small new bag yields fewer ambiguities than the directly assigning label method. The iterative instance classifier refinement is implemented online using multiple streams in convolutional neural networks, where the first is an MIL network and the others are for instance classifier refinement supervised by the preceding one. Experiments are conducted on the PASCAL VOC, ImageNet detection, and MS-COCO benchmarks for WSOD. Results show that our method outperforms the previous state of the art significantly.
弱监督目标检测(WSOD)仅使用图像级注释来训练目标检测器,在目标识别中变得越来越重要。在本文中,我们提出了一种用于WSOD的新型深度网络。与之前使用多实例学习(MIL)将目标检测问题转化为图像分类问题的网络不同,我们的策略通过迭代过程生成提议簇来学习精细的实例分类器。同一簇中的提议在空间上相邻且与同一目标相关联。这防止网络过于关注目标的部分而不是整个目标。我们首先表明,可以基于提议簇直接为实例分类器细化分配对象或背景标签,然后表明将每个簇视为一个新的小袋子比直接分配标签的方法产生的歧义更少。迭代实例分类器细化在卷积神经网络中使用多个流在线实现,第一个是MIL网络,其他流用于由前一个监督的实例分类器细化。针对WSOD在PASCAL VOC、ImageNet检测和MS-COCO基准上进行了实验。结果表明,我们的方法显著优于先前的现有技术。