Suppr超能文献

PCL:用于弱监督目标检测的提议聚类学习

PCL: Proposal Cluster Learning for Weakly Supervised Object Detection.

作者信息

Tang Peng, Wang Xinggang, Bai Song, Shen Wei, Bai Xiang, Liu Wenyu, Yuille Alan

出版信息

IEEE Trans Pattern Anal Mach Intell. 2020 Jan;42(1):176-191. doi: 10.1109/TPAMI.2018.2876304. Epub 2018 Oct 16.

Abstract

Weakly Supervised Object Detection (WSOD), using only image-level annotations to train object detectors, is of growing importance in object recognition. In this paper, we propose a novel deep network for WSOD. Unlike previous networks that transfer the object detection problem to an image classification problem using Multiple Instance Learning (MIL), our strategy generates proposal clusters to learn refined instance classifiers by an iterative process. The proposals in the same cluster are spatially adjacent and associated with the same object. This prevents the network from concentrating too much on parts of objects instead of whole objects. We first show that instances can be assigned object or background labels directly based on proposal clusters for instance classifier refinement, and then show that treating each cluster as a small new bag yields fewer ambiguities than the directly assigning label method. The iterative instance classifier refinement is implemented online using multiple streams in convolutional neural networks, where the first is an MIL network and the others are for instance classifier refinement supervised by the preceding one. Experiments are conducted on the PASCAL VOC, ImageNet detection, and MS-COCO benchmarks for WSOD. Results show that our method outperforms the previous state of the art significantly.

摘要

弱监督目标检测(WSOD)仅使用图像级注释来训练目标检测器,在目标识别中变得越来越重要。在本文中,我们提出了一种用于WSOD的新型深度网络。与之前使用多实例学习(MIL)将目标检测问题转化为图像分类问题的网络不同,我们的策略通过迭代过程生成提议簇来学习精细的实例分类器。同一簇中的提议在空间上相邻且与同一目标相关联。这防止网络过于关注目标的部分而不是整个目标。我们首先表明,可以基于提议簇直接为实例分类器细化分配对象或背景标签,然后表明将每个簇视为一个新的小袋子比直接分配标签的方法产生的歧义更少。迭代实例分类器细化在卷积神经网络中使用多个流在线实现,第一个是MIL网络,其他流用于由前一个监督的实例分类器细化。针对WSOD在PASCAL VOC、ImageNet检测和MS-COCO基准上进行了实验。结果表明,我们的方法显著优于先前的现有技术。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验