Suppr超能文献

SEQ2SEQ-VIS:一种用于序列到序列模型的可视化调试工具。

SEQ2SEQ-VIS : A Visual Debugging Tool for Sequence-to-Sequence Models.

作者信息

Strobelt Hendrik, Gehrmann Sebastian, Behrisch Michael, Perer Adam, Pfister Hanspeter, Rush Alexander M

出版信息

IEEE Trans Vis Comput Graph. 2018 Oct 17. doi: 10.1109/TVCG.2018.2865044.

Abstract

Neural sequence-to-sequence models have proven to be accurate and robust for many sequence prediction tasks, and have become the standard approach for automatic translation of text. The models work with a five-stage blackbox pipeline that begins with encoding a source sequence to a vector space and then decoding out to a new target sequence. This process is now standard, but like many deep learning methods remains quite difficult to understand or debug. In this work, we present a visual analysis tool that allows interaction and "what if"-style exploration of trained sequence-to-sequence models through each stage of the translation process. The aim is to identify which patterns have been learned, to detect model errors, and to probe the model with counterfactual scenario. We demonstrate the utility of our tool through several real-world sequence-to-sequence use cases on large-scale models.

摘要

神经序列到序列模型已被证明在许多序列预测任务中准确且稳健,并已成为文本自动翻译的标准方法。这些模型通过一个五阶段的黑箱管道工作,该管道首先将源序列编码到向量空间,然后解码生成新的目标序列。这个过程现在是标准的,但与许多深度学习方法一样,仍然很难理解或调试。在这项工作中,我们提出了一种可视化分析工具,该工具允许通过翻译过程的每个阶段对训练好的序列到序列模型进行交互和“假设”式探索。目的是识别学习到了哪些模式,检测模型错误,并通过反事实场景探测模型。我们通过在大规模模型上的几个实际序列到序列用例展示了我们工具的实用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验