Université de Lorraine, AgroParisTech, Inra, UMR Silva, F-54000 Nancy, France.
Université de Lorraine, AgroParisTech, Inra, UMR Silva, F-54000 Nancy, France.
Sci Total Environ. 2019 Feb 15;651(Pt 2):2365-2379. doi: 10.1016/j.scitotenv.2018.09.367. Epub 2018 Oct 2.
Ozone (O) and drought increase tree oxidative stress. To protect forest health, we need to improve risk assessment, using metric model such as the phytotoxic O dose above a threshold of y nmol·m·s (PODy), while taking into account detoxification mechanisms and interacting stresses. The impact of drought events on the effect of O pollution deserves special attention. Water deficit may decrease O entrance into the leaves by reducing stomatal opening; however, water deficit also induces changes in cell redox homeostasis. Besides, the behaviour of the cell antioxidative charge in case of stress combination (water deficit and O) still remains poorly investigated. To decipher the response of detoxification mechanisms relatively to the Halliwell-Asada-Foyer cycle (HAF), we exposed poplar saplings (Populus nigra × deltoides) composed of two genotypes (Carpaccio and Robusta), to various treatments for 17 days, i.e. i) mild water deficit, ii) 120 ppb O, and iii) a combination of these two treatments. Ozone similarly impacted the growth of the two genotypes, with an important leaf loss. Water deficit decreased growth by almost one third as compared to the control plants. As for the combined treatment, water deficit protected the saplings from leaf ozone injury, but with an inhibitory effect on growth. The pool of total ascorbate was not modified by the different treatments, while the pool of total glutathione increased with POD. We noticed a few differences between the two genotypes, particularly concerning the activity of monodehydroascorbate reductase and glutathione reductase relatively to POD. The expression profiles of genes coding for the dehydroascorbate reductase and glutathione reductase isoforms differed, probably in link with the putative localisation of ROS production in response to water deficit and ozone, respectively. Our result would argue for a major role of MDHAR, GR and glutathione in the preservation of the redox status.
臭氧 (O) 和干旱会增加树木的氧化应激。为了保护森林健康,我们需要改进风险评估,使用毒理学模型,如超过 y nmol·m·s (PODy) 阈值的臭氧剂量 (PODy),同时考虑解毒机制和相互作用的压力。干旱事件对臭氧污染影响的值得特别关注。水分亏缺可能会通过减少气孔开度来减少臭氧进入叶片;然而,水分亏缺也会引起细胞氧化还原稳态的变化。此外,在应激组合(水分亏缺和臭氧)的情况下,细胞抗氧化电荷的行为仍然研究甚少。为了解解毒机制相对于 Halliwell-Asada-Foyer 循环 (HAF) 的反应,我们将由两个基因型 (Carpaccio 和 Robusta) 组成的杨树幼苗 (Populus nigra × deltoides) 暴露于各种处理 17 天,即 i) 轻度水分亏缺,ii) 120 ppb 臭氧,和 iii) 这两种处理的组合。臭氧对两种基因型的生长都有类似的影响,导致大量叶片损失。与对照植物相比,水分亏缺使生长减少了近三分之一。至于联合处理,水分亏缺保护了幼苗免受叶片臭氧伤害,但对生长有抑制作用。不同处理并未改变总抗坏血酸的池,但总谷胱甘肽的池随 POD 增加。我们注意到两个基因型之间存在一些差异,特别是在单脱氢抗坏血酸还原酶和谷胱甘肽还原酶的活性相对于 POD 方面。编码脱氢抗坏血酸还原酶和谷胱甘肽还原酶同工型的基因的表达谱不同,可能与水分亏缺和臭氧分别导致 ROS 产生的假定局部化有关。我们的结果表明,MDHAR、GR 和谷胱甘肽在维持氧化还原状态方面可能发挥主要作用。