Suppr超能文献

2015年英国研究项目的横断面分析:与英国健康研究管理局合作开展的一项范围界定项目的结果

Cross-sectional analysis of UK research studies in 2015: results from a scoping project with the UK Health Research Authority.

作者信息

Clark Tim, Wicentowski Richard H, Sydes Matthew R

机构信息

Faculty of Medicine, Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie (IBE), Ludwig-Maximilians University, Munich, Germany.

Computer Science Department, Swarthmore College, Swarthmore, Pennsylvania, USA.

出版信息

BMJ Open. 2018 Oct 17;8(10):e022340. doi: 10.1136/bmjopen-2018-022340.

Abstract

OBJECTIVES

To determine whether data on research studies held by the UK Health Research Authority (HRA) could be summarised automatically with minimal manual intervention. There are numerous initiatives to reduce research waste by improving the design, conduct, analysis and reporting of clinical studies. However, quantitative data on the characteristics of clinical studies and the impact of the various initiatives are limited.

DESIGN

Feasibility study, using 1 year of data.

SETTING

We worked with the HRA on a pilot study using research applications submitted for UK-wide ethical review. We extracted into a single dataset, information held in anonymised XML files by the Integrated Research Application System (IRAS) and the HRA Assessment Review Portal (HARP). Research applications from 2014 to 2016 were provided. We used standard text extraction methods to assess information held in free-text fields. We use simple, descriptive methods to summarise the research activities that we extracted.

PARTICIPANTS

Not applicable-records-based study INTERVENTIONS: Not applicable.

PRIMARY AND SECONDARY OUTCOME MEASURES

Feasibility of extraction and processing.

RESULTS

We successfully imported 1775 non-duplicate research applications from the XML files into a single database. Of these, 963 were randomised controlled trials and 812 were other studies. Most studies received a favourable opinion. There was limited patient and public involvement in the studies. Most, but not all, studies were planned for publication of results. Novel study designs (eg, adaptive and Bayesian designs) were infrequently reported.

CONCLUSIONS

We have demonstrated that the data submitted from IRAS to the HRA and its HARP system are accessible and can be queried for information. We strongly encourage the development of fully resourced collaborative projects to further this work. This would aid understanding of how study characteristics change over time and across therapeutic areas, as well as the progress of initiatives to improve the quality and relevance of research studies.

摘要

目的

确定英国健康研究局(HRA)持有的研究数据能否在最少人工干预的情况下自动汇总。有许多举措旨在通过改进临床研究的设计、实施、分析和报告来减少研究浪费。然而,关于临床研究特征及各项举措影响的定量数据有限。

设计

使用1年数据进行可行性研究。

背景

我们与HRA合作开展了一项试点研究,使用提交至全英伦理审查的研究申请。我们将综合研究应用系统(IRAS)和HRA评估审查门户(HARP)以匿名XML文件形式保存的信息提取到一个单一数据集中。提供了2014年至2016年的研究申请。我们使用标准文本提取方法评估自由文本字段中的信息。我们使用简单的描述性方法汇总提取的研究活动。

参与者

不适用——基于记录的研究干预措施:不适用。

主要和次要结局指标

提取和处理的可行性。

结果

我们成功将XML文件中的1775份非重复研究申请导入到一个单一数据库中。其中,963项为随机对照试验,812项为其他研究。大多数研究获得了有利意见。研究中患者和公众参与有限。大多数(但并非全部)研究计划发表结果。很少报告新颖的研究设计(如适应性和贝叶斯设计)。

结论

我们已经证明,从IRAS提交至HRA及其HARP系统的数据是可访问的,并且可以查询相关信息。我们强烈鼓励开展资源充足的合作项目以推进这项工作。这将有助于了解研究特征如何随时间和治疗领域变化,以及提高研究质量和相关性举措的进展情况。

相似文献

4
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
10

本文引用的文献

1
Research ethics committee decision-making in relation to an efficient neonatal trial.与高效新生儿试验相关的研究伦理委员会决策
Arch Dis Child Fetal Neonatal Ed. 2017 Jul;102(4):F291-F298. doi: 10.1136/archdischild-2016-310935. Epub 2016 Sep 14.
2
Why Most Clinical Research Is Not Useful.为何大多数临床研究并无用处。
PLoS Med. 2016 Jun 21;13(6):e1002049. doi: 10.1371/journal.pmed.1002049. eCollection 2016 Jun.
3
Patient involvement in clinical research: why, when, and how.患者参与临床研究:为何、何时以及如何参与。
Patient Prefer Adherence. 2016 Apr 27;10:631-40. doi: 10.2147/PPA.S104259. eCollection 2016.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验