Suppr超能文献

实现私人化和实用化的药理学合作。

Realizing private and practical pharmacological collaboration.

机构信息

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.

Department of Mathematics, MIT, Cambridge, MA 02139, USA.

出版信息

Science. 2018 Oct 19;362(6412):347-350. doi: 10.1126/science.aat4807.

Abstract

Although combining data from multiple entities could power life-saving breakthroughs, open sharing of pharmacological data is generally not viable because of data privacy and intellectual property concerns. To this end, we leverage modern cryptographic tools to introduce a computational protocol for securely training a predictive model of drug-target interactions (DTIs) on a pooled dataset that overcomes barriers to data sharing by provably ensuring the confidentiality of all underlying drugs, targets, and observed interactions. Our protocol runs within days on a real dataset of more than 1 million interactions and is more accurate than state-of-the-art DTI prediction methods. Using our protocol, we discover previously unidentified DTIs that we experimentally validated via targeted assays. Our work lays a foundation for more effective and cooperative biomedical research.

摘要

虽然整合来自多个实体的数据可以推动拯救生命的突破,但由于数据隐私和知识产权的问题,开放地共享药理学数据通常是不可行的。为此,我们利用现代加密工具引入了一个计算协议,该协议可以在一个汇总数据集上安全地训练药物-靶标相互作用(DTI)的预测模型,该协议通过可证明确保所有基础药物、靶标和观察到的相互作用的机密性来克服数据共享的障碍。我们的协议在一个超过 100 万相互作用的真实数据集上可以在几天内运行,并且比最先进的 DTI 预测方法更准确。使用我们的协议,我们发现了以前未识别的 DTI,我们通过靶向测定实验验证了这些 DTI。我们的工作为更有效和合作的生物医学研究奠定了基础。

相似文献

6
Predicting Drug-Target Interactions Based on Small Positive Samples.基于少量阳性样本预测药物-靶点相互作用
Curr Protein Pept Sci. 2018;19(5):479-487. doi: 10.2174/1389203718666161108102330.
8
Sharing data safely while preserving privacy.在保护隐私的同时安全地共享数据。
Lancet. 2019 Nov 23;394(10212):1902. doi: 10.1016/S0140-6736(19)32603-0. Epub 2019 Nov 7.

引用本文的文献

3
Privacy-Enhancing Technologies in Biomedical Data Science.生物医学数据科学中的隐私增强技术。
Annu Rev Biomed Data Sci. 2024 Aug;7(1):317-343. doi: 10.1146/annurev-biodatasci-120423-120107.
5
Advancements in brain-machine interfaces for application in the metaverse.用于元宇宙应用的脑机接口的进展。
Front Neurosci. 2024 Jun 11;18:1383319. doi: 10.3389/fnins.2024.1383319. eCollection 2024.
7
Distribution-Invariant Differential Privacy.分布不变差分隐私
J Econom. 2023 Aug;235(2):444-453. doi: 10.1016/j.jeconom.2022.05.004. Epub 2022 Jun 18.
9
Scientific discovery in the age of artificial intelligence.人工智能时代的科学发现。
Nature. 2023 Aug;620(7972):47-60. doi: 10.1038/s41586-023-06221-2. Epub 2023 Aug 2.

本文引用的文献

3
Enabling Privacy-Preserving GWASs in Heterogeneous Human Populations.在异质人群中实现保护隐私的 GWASs。
Cell Syst. 2016 Jul;3(1):54-61. doi: 10.1016/j.cels.2016.04.013. Epub 2016 Jul 21.
5
Deep learning.深度学习。
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
9
Drug discovery in pharmaceutical industry: productivity challenges and trends.医药行业的药物研发:生产力挑战与趋势。
Drug Discov Today. 2012 Oct;17(19-20):1088-102. doi: 10.1016/j.drudis.2012.05.007. Epub 2012 May 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验