Suppr超能文献

通过异构网络模型整合目标信息进行药物重定位。

Drug repositioning by integrating target information through a heterogeneous network model.

机构信息

Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106, USA and Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106, USA and Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.

Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106, USA and Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.

出版信息

Bioinformatics. 2014 Oct 15;30(20):2923-30. doi: 10.1093/bioinformatics/btu403. Epub 2014 Jun 27.

Abstract

MOTIVATION

The emergence of network medicine not only offers more opportunities for better and more complete understanding of the molecular complexities of diseases, but also serves as a promising tool for identifying new drug targets and establishing new relationships among diseases that enable drug repositioning. Computational approaches for drug repositioning by integrating information from multiple sources and multiple levels have the potential to provide great insights to the complex relationships among drugs, targets, disease genes and diseases at a system level.

RESULTS

In this article, we have proposed a computational framework based on a heterogeneous network model and applied the approach on drug repositioning by using existing omics data about diseases, drugs and drug targets. The novelty of the framework lies in the fact that the strength between a disease-drug pair is calculated through an iterative algorithm on the heterogeneous graph that also incorporates drug-target information. Comprehensive experimental results show that the proposed approach significantly outperforms several recent approaches. Case studies further illustrate its practical usefulness.

AVAILABILITY AND IMPLEMENTATION

http://cbc.case.edu

CONTACT

jingli@cwru.edu

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

网络医学的出现不仅为更好、更全面地理解疾病的分子复杂性提供了更多的机会,而且还为识别新的药物靶点和建立疾病之间的新关系提供了一种很有前途的工具,从而实现药物重定位。通过整合来自多个来源和多个层次的信息的计算方法来进行药物重定位,有可能从系统层面上提供药物、靶点、疾病基因和疾病之间复杂关系的深刻见解。

结果

在本文中,我们提出了一个基于异构网络模型的计算框架,并应用该方法利用现有的关于疾病、药物和药物靶点的组学数据进行药物重定位。该框架的新颖之处在于,疾病-药物对之间的强度是通过在异构图上的迭代算法计算的,该算法还整合了药物-靶点信息。综合实验结果表明,所提出的方法明显优于几种最近的方法。案例研究进一步说明了它的实际用途。

可用性和实现

http://cbc.case.edu

联系人

jingli@cwru.edu

补充信息

补充数据可在《生物信息学》在线获取。

相似文献

4
Computational Drug Repositioning with Random Walk on a Heterogeneous Network.基于异质网络随机游走的计算药物重定位
IEEE/ACM Trans Comput Biol Bioinform. 2019 Nov-Dec;16(6):1890-1900. doi: 10.1109/TCBB.2018.2832078. Epub 2018 May 2.

引用本文的文献

4
Label Transfer for Drug Disease Association in Three Meta-Paths.基于三条元路径的药物-疾病关联标签传递
Evol Bioinform Online. 2024 Sep 13;20:11769343241272414. doi: 10.1177/11769343241272414. eCollection 2024.

本文引用的文献

1
Pathway-based drug repositioning using causal inference.基于通路的药物重定位使用因果推理。
BMC Bioinformatics. 2013;14 Suppl 16(Suppl 16):S3. doi: 10.1186/1471-2105-14-S16-S3. Epub 2013 Oct 22.
4
Exploring the human diseasome: the human disease network.探索人类疾病组学:人类疾病网络。
Brief Funct Genomics. 2012 Nov;11(6):533-42. doi: 10.1093/bfgp/els032. Epub 2012 Oct 12.
5
Assessing drug target association using semantic linked data.利用语义关联数据评估药物靶点关联。
PLoS Comput Biol. 2012;8(7):e1002574. doi: 10.1371/journal.pcbi.1002574. Epub 2012 Jul 5.
7
Systematic drug repositioning based on clinical side-effects.基于临床副作用的系统药物再定位。
PLoS One. 2011;6(12):e28025. doi: 10.1371/journal.pone.0028025. Epub 2011 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验