Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia.
Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia.
Epilepsia. 2018 Nov;59(11):2019-2034. doi: 10.1111/epi.14580. Epub 2018 Oct 19.
To determine when spontaneous granule cell epileptiform discharges first occur after hippocampal injury, and to identify the postinjury "latent" period as either a "silent" gestational state of epileptogenesis or a subtle epileptic state in gradual transition to a more obvious epileptic state.
Nonconvulsive status epilepticus evoked by perforant path stimulation in urethane-sedated rats produced selective and extensive hippocampal injury and a "latent" period that preceded the onset of the first clinically obvious epileptic seizures. Continuous granule cell layer depth recording and video monitoring assessed the time course of granule cell hyperexcitability and the onset/offset times of spontaneous epileptiform discharges and behavioral seizures.
One day postinjury, granule cells in awake rats were hyperexcitable to afferent input, and continuously generated spontaneous population spikes. During the ~2-4 week "latent" period, granule cell epileptiform discharges lasting ~30 seconds caused subtle focal seizures characterized by immobilization and facial automatisms that were undetected by behavioral assessment alone but identified post hoc. Granule cell layer epileptiform discharge duration eventually tripled, which caused the first clinically obvious seizure, ending the "latent" period. Behavioral seizure duration was linked tightly to spontaneous granule cell layer events. Granule cell epileptiform discharges preceded all behavioral seizure onsets, and clonic behaviors ended abruptly within seconds of the termination of each granule cell epileptiform discharge. Noninjurious hippocampal excitation produced no evidence of granule cell hyperexcitability or epileptogenesis.
The latent period in this model is a subtle epileptic state in transition to a more clinically obvious epileptic state, not a seizure-free "gestational" state when an unidentified epileptogenic mechanism gradually develops. Based on the onset/offset times of electrographic and behavioral events, granule cell behavior may be the prime determinant of seizure onset, phenotype, duration, and offset in this model of hippocampal-onset epilepsy. Extensive hippocampal neuron loss could be the primary epileptogenic mechanism.
确定海马损伤后自发颗粒细胞癫痫样放电首次出现的时间,并确定损伤后的“潜伏”期是癫痫发生的“沉默”妊娠状态还是逐渐向更明显癫痫状态转变的细微癫痫状态。
在乌拉坦镇静大鼠的穿通路径刺激下诱发非惊厥性癫痫持续状态,产生选择性和广泛的海马损伤以及在首次出现临床明显癫痫发作之前的“潜伏”期。连续的颗粒细胞层深度记录和视频监测评估了颗粒细胞过度兴奋的时间过程以及自发癫痫样放电和行为性癫痫发作的起始/终止时间。
损伤后 1 天,清醒大鼠的颗粒细胞对传入刺激过度兴奋,并持续产生自发的群体峰电位。在~2-4 周的“潜伏”期内,持续约 30 秒的颗粒细胞癫痫样放电导致细微的局灶性癫痫发作,表现为固定和面部自动症,仅通过行为评估无法检测到,但可以事后识别。颗粒细胞层癫痫样放电持续时间最终增加了两倍,导致首次出现临床明显的癫痫发作,结束了“潜伏”期。行为性癫痫发作的持续时间与自发颗粒细胞层事件紧密相关。颗粒细胞癫痫样放电先于所有行为性癫痫发作开始,并且每次颗粒细胞癫痫样放电终止后,阵挛行为会在数秒内突然结束。非损伤性海马兴奋没有证据表明颗粒细胞过度兴奋或癫痫发生。
在该模型中,潜伏期是一种向更具临床明显癫痫状态转变的细微癫痫状态,而不是在未识别的致痫机制逐渐发展时的无癫痫发作“妊娠”状态。基于电生理和行为事件的起始/终止时间,颗粒细胞行为可能是该海马起始性癫痫模型中癫痫发作起始、表型、持续时间和终止的主要决定因素。广泛的海马神经元丢失可能是主要的致痫机制。