Zhao Tian, Steves Megan A, Chapman Brian S, Tracy Joseph B, Knappenberger Kenneth L
Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States.
Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States.
Anal Chem. 2018 Nov 20;90(22):13702-13707. doi: 10.1021/acs.analchem.8b04101. Epub 2018 Oct 31.
A method for quantification of plasmon mode quality factors using a novel collinear single-beam interferometric nonlinear optical (INLO) microscope is described. A collinear sequence of phase-stabilized femtosecond laser pulses generated by a series of birefringent optics is used for the INLO experiments. Our experimental designs allow for the creation of pulse replicas (800 nm carrier wave) that exhibit interpulse phase stability of 33 mrad (approximately 14 attoseonds), which can be incrementally temporally delayed from attosecond to picosecond time scales. This temporal tuning range allows for resonant electronic Fourier spectroscopy of plasmonic gold nanoparticles. The collinear geometry of the pulse pair facilitates integration into an optical microscopy platform capable of single-nanoparticle sensitivity. Analysis of the Fourier spectra in the frequency domain yields the sample plasmon resonant response and homogeneous line width; the latter provided quantification of the plasmon mode quality factor. We have applied this INLO approach to quantitatively determine the influence of encapsulation of gold nanorods with silica shells on plasmon quality factors. We have studied a series of three gold nanorod samples, distinguished by surface passivation. These include cetyltrimethylammonium bromide (CTAB)-passivated nanorods, as well as ones encapsulated by 5 and 20 nanometer-thick silica shells. The Q-factor results show a trend of increasing quality factor, increasing by 46% from 54 ± 8 to 79 ± 9, in going from CTAB- to 20 nm silica-coated AuNRs. The straightforward method of INLO enables analysis of plasmon responses to environmental influences, such as analyte binding and solvent effects, as well as quantification of structure-specific plasmon coherence dynamics.
描述了一种使用新型共线单光束干涉非线性光学(INLO)显微镜定量测定等离子体模式品质因数的方法。由一系列双折射光学元件产生的共线相位稳定飞秒激光脉冲序列用于INLO实验。我们的实验设计允许创建脉冲复制品(800nm载波),其脉冲间相位稳定性为33mrad(约14阿秒),可以在从阿秒到皮秒的时间尺度上进行增量时间延迟。这种时间调谐范围允许对等离子体金纳米颗粒进行共振电子傅里叶光谱分析。脉冲对的共线几何结构便于集成到具有单纳米颗粒灵敏度的光学显微镜平台中。在频域中对傅里叶光谱进行分析可得出样品等离子体共振响应和均匀线宽;后者提供了等离子体模式品质因数的定量结果。我们已应用这种INLO方法来定量确定用二氧化硅壳包裹金纳米棒对等离子体品质因数的影响。我们研究了一系列三个金纳米棒样品,它们通过表面钝化加以区分。这些样品包括十六烷基三甲基溴化铵(CTAB)钝化的纳米棒,以及包裹有5纳米和20纳米厚二氧化硅壳的纳米棒。品质因数结果显示出品质因数增加的趋势,从CTAB钝化的金纳米棒到20纳米二氧化硅包覆的金纳米棒,品质因数从54±8增加到79±9,增加了46%。INLO这种直接的方法能够分析等离子体对环境影响(如分析物结合和溶剂效应)的响应,以及对特定结构的等离子体相干动力学进行定量分析。