Suppr超能文献

组织非特异性碱性磷酸酶通过 Erk1、2 促进颅骨祖细胞的细胞周期进程和胞质分裂。

Tissue nonspecific alkaline phosphatase promotes calvarial progenitor cell cycle progression and cytokinesis via Erk1,2.

机构信息

Department of Orthodontics and Pediatric Dentistry, School of Dentistry, 1011 N University Avenue, University of Michigan, Ann Arbor, MI 48109-1078, USA.

Department of Orthodontics and Pediatric Dentistry, School of Dentistry, 1011 N University Avenue, University of Michigan, Ann Arbor, MI 48109-1078, USA.

出版信息

Bone. 2019 Mar;120:125-136. doi: 10.1016/j.bone.2018.10.013. Epub 2018 Oct 17.

Abstract

Bone growth is dependent upon the presence of self-renewing progenitor cell populations. While the contribution of Tissue Nonspecific Alkaline Phosphatase (TNAP) enzyme activity in promoting bone mineralization when expressed in differentiated bone forming cells is well understood, little is known regarding the role of TNAP in bone progenitor cells. We previously found diminished proliferation in the calvarial MC3T3E1 cell line upon suppression of TNAP by shRNA, and in calvarial cells and tissues of TNAP mice. These findings indicate that TNAP promotes cell proliferation. Here we investigate how TNAP mediates this effect. Results show that TNAP is essential for calvarial progenitor cell cycle progression and cytokinesis, and that these effects are mediated by inorganic phosphate and Erk1/2. Levels of active Erk1/2 are significantly diminished in TNAP deficient cranial cells and tissues even in the presence of inorganic phosphate. Moreover, in the absence of TNAP, FGFR2 expression levels are high and FGF2 rescues phospho-Erk1/2 levels and cell cycle abnormalities to a significantly greater extent than inorganic phosphate. Based upon the data we propose a model in which TNAP stimulates Erk1/2 activity via both phosphate dependent and independent mechanisms to promote cell cycle progression and cytokinesis in calvarial bone progenitor cells. Concomitantly, TNAP feeds back to inhibit FGFR2 expression. These results identify a novel mechanism by which TNAP promotes calvarial progenitor cell renewal and indicate that converging pathways exist downstream of FGF signaling and TNAP activity to control craniofacial skeletal development.

摘要

骨生长依赖于自我更新祖细胞群体的存在。虽然组织非特异性碱性磷酸酶(TNAP)酶活性在表达于分化的成骨细胞中促进骨矿化方面的作用已得到充分理解,但对于 TNAP 在骨祖细胞中的作用知之甚少。我们之前发现,在通过 shRNA 抑制 TNAP 后,颅骨 MC3T3E1 细胞系中的增殖减少,并且在 TNAP 小鼠的颅骨细胞和组织中也是如此。这些发现表明 TNAP 促进细胞增殖。在这里,我们研究了 TNAP 如何介导这种作用。结果表明,TNAP 对于颅骨祖细胞的细胞周期进程和胞质分裂是必不可少的,并且这些作用是由无机磷酸盐和 Erk1/2 介导的。即使存在无机磷酸盐,TNAP 缺陷型颅细胞和组织中的活性 Erk1/2 水平也显著降低。此外,在没有 TNAP 的情况下,FGFR2 表达水平较高,并且 FGF2 可挽救磷酸化-Erk1/2 水平和细胞周期异常,其程度远大于无机磷酸盐。基于这些数据,我们提出了一个模型,其中 TNAP 通过依赖于磷酸盐的和独立的机制刺激 Erk1/2 活性,以促进颅骨骨祖细胞的细胞周期进程和胞质分裂。同时,TNAP 反馈抑制 FGFR2 的表达。这些结果确定了 TNAP 促进颅骨祖细胞更新的新机制,并表明 FGF 信号和 TNAP 活性下游存在收敛途径来控制颅面骨骼发育。

相似文献

3
Tissue-nonspecific alkaline phosphatase promotes the osteogenic differentiation of osteoprogenitor cells.
Biochem Biophys Res Commun. 2020 Apr 9;524(3):702-709. doi: 10.1016/j.bbrc.2020.01.136. Epub 2020 Feb 5.
6
Functional characterization of osteoblasts and osteoclasts from alkaline phosphatase knockout mice.
J Bone Miner Res. 2000 Oct;15(10):1879-88. doi: 10.1359/jbmr.2000.15.10.1879.
8
Tissue Nonspecific Alkaline Phosphatase (TNAP) Regulates Cranial Base Growth and Synchondrosis Maturation.
Front Physiol. 2017 Mar 21;8:161. doi: 10.3389/fphys.2017.00161. eCollection 2017.
10
A new perspective on the function of Tissue Non-Specific Alkaline Phosphatase: from bone mineralization to intra-cellular lipid accumulation.
Mol Cell Biochem. 2022 Aug;477(8):2093-2106. doi: 10.1007/s11010-022-04429-w. Epub 2022 Apr 26.

引用本文的文献

3
Genes and Pathways Associated with Skeletal Sagittal Malocclusions: A Systematic Review.
Int J Mol Sci. 2021 Dec 2;22(23):13037. doi: 10.3390/ijms222313037.
4
Macropore design of tissue engineering scaffolds regulates mesenchymal stem cell differentiation fate.
Biomaterials. 2021 May;272:120769. doi: 10.1016/j.biomaterials.2021.120769. Epub 2021 Mar 24.
9
Hypophosphatasia: Biological and Clinical Aspects, Avenues for Therapy.
Clin Biochem Rev. 2020 Feb;41(1):13-27. doi: 10.33176/AACB-19-00031.

本文引用的文献

1
Hypophosphatasia: Natural history study of 101 affected children investigated at one research center.
Bone. 2016 Dec;93:125-138. doi: 10.1016/j.bone.2016.08.019. Epub 2016 Aug 27.
2
Regulation of FGF signaling: Recent insights from studying positive and negative modulators.
Semin Cell Dev Biol. 2016 May;53:101-14. doi: 10.1016/j.semcdb.2016.01.023. Epub 2016 Feb 20.
3
Enzyme replacement for craniofacial skeletal defects and craniosynostosis in murine hypophosphatasia.
Bone. 2015 Sep;78:203-11. doi: 10.1016/j.bone.2015.05.005. Epub 2015 May 8.
5
The aurora kinases in cell cycle and leukemia.
Oncogene. 2015 Jan 29;34(5):537-45. doi: 10.1038/onc.2014.14. Epub 2014 Mar 17.
6
Mitotic phosphorylation of histone H3 threonine 80.
Cell Cycle. 2014;13(3):440-52. doi: 10.4161/cc.27269. Epub 2013 Nov 25.
7
Multisystemic functions of alkaline phosphatases.
Methods Mol Biol. 2013;1053:27-51. doi: 10.1007/978-1-62703-562-0_3.
8
Cell cycle checkpoint regulators reach a zillion.
Cell Cycle. 2013 May 15;12(10):1501-9. doi: 10.4161/cc.24637. Epub 2013 Apr 17.
9
Foxc1 controls the growth of the murine frontal bone rudiment by direct regulation of a Bmp response threshold of Msx2.
Development. 2013 Mar;140(5):1034-44. doi: 10.1242/dev.085225. Epub 2013 Jan 23.
10
DNA damage associated with mitosis and cytokinesis failure.
Oncogene. 2013 Sep 26;32(39):4593-601. doi: 10.1038/onc.2012.615. Epub 2013 Jan 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验