The Francis Crick Institute, London NW1 1AT, UK.
The Francis Crick Institute, London NW1 1AT, UK; Max-Delbrück Center for Molecular Medicine, Berlin 13092, Germany.
Cell. 2018 Nov 1;175(4):1105-1118.e17. doi: 10.1016/j.cell.2018.09.040. Epub 2018 Oct 18.
Neural induction in vertebrates generates a CNS that extends the rostral-caudal length of the body. The prevailing view is that neural cells are initially induced with anterior (forebrain) identity; caudalizing signals then convert a proportion to posterior fates (spinal cord). To test this model, we used chromatin accessibility to define how cells adopt region-specific neural fates. Together with genetic and biochemical perturbations, this identified a developmental time window in which genome-wide chromatin-remodeling events preconfigure epiblast cells for neural induction. Contrary to the established model, this revealed that cells commit to a regional identity before acquiring neural identity. This "primary regionalization" allocates cells to anterior or posterior regions of the nervous system, explaining how cranial and spinal neurons are generated at appropriate axial positions. These findings prompt a revision to models of neural induction and support the proposed dual evolutionary origin of the vertebrate CNS.
脊椎动物的神经诱导产生了一个 CNS,它延伸了身体的前后长度。目前的观点是,神经细胞最初具有前脑(端脑)的特性;然后,尾部信号将一部分转化为后命运(脊髓)。为了验证这个模型,我们使用染色质可及性来定义细胞如何采用特定区域的神经命运。结合遗传和生化干扰,这确定了一个发育时间窗口,在此期间,全基因组染色质重塑事件使上胚层细胞为神经诱导做好准备。与既定模型相反,这表明细胞在获得神经特性之前就已经确定了区域特性。这种“初级区域化”将细胞分配到神经系统的前区或后区,解释了颅神经和脊神经是如何在适当的轴向位置产生的。这些发现促使我们对神经诱导模型进行修订,并支持脊椎动物 CNS 的双进化起源假说。