Mishchenko Michael I, Dlugach Janna M, Lock James A, Yurkin Maxim A
NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA.
Main Astronomical Observatory of the National Academy of Sciences of Ukraine, 27 Zabolotny Str., 03680, Kyiv, Ukraine.
J Quant Spectrosc Radiat Transf. 2018 Sep;217:274-277. doi: 10.1016/j.jqsrt.2018.05.034. Epub 2018 Jun 7.
A recently developed FORTRAN program computing far-field optical observables for spherical particles in an absorbing medium has exhibited numerical instability arising when the product of the particle vacuum size parameter and the imaginary part of the refractive index of the host becomes sufficiently large. We offer a simple analytical explanation of this instability and propose a compact numerical algorithm for the stable computation of Lorenz-Mie coefficients based on an upward recursion formula for spherical Hankel functions of a complex argument. Extensive tests confirm an excellent accuracy of this algorithm approaching machine precision. The improved public-domain FORTRAN program is available at https://www.giss.nasa.gov/staff/mmishchenko/Lorenz-Mie.html.
最近开发的一个用于计算吸收介质中球形粒子远场光学可观测量的FORTRAN程序,当粒子真空尺寸参数与主体折射率虚部的乘积变得足够大时,会出现数值不稳定性。我们对这种不稳定性给出了一个简单的解析解释,并基于复变量球形汉克尔函数的向上递推公式,提出了一种紧凑的数值算法来稳定计算洛伦兹 - 米系数。大量测试证实了该算法具有接近机器精度的极高准确性。改进后的公共领域FORTRAN程序可在https://www.giss.nasa.gov/staff/mmishchenko/Lorenz-Mie.html获取。