Suppr超能文献

基于二氧杂双环[3.2.1]辛烷骨架寻找新型SGLT2抑制剂的计算机辅助分子对接研究

In silico Molecular Docking Study to Search New SGLT2 Inhibitor based on Dioxabicyclo[3.2.1] Octane Scaffold.

作者信息

Kumar Shubham, Khatik Gopal L, Mittal Amit

机构信息

School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144 411, Punjab, India.

出版信息

Curr Comput Aided Drug Des. 2020;16(2):145-154. doi: 10.2174/1573409914666181019165821.

Abstract

BACKGROUND

Diabetes is a leading cause of high mortality rate in the world. Recently, SGLT2 inhibitors showed the promising result to treat diabetes and therefore several molecules are approved by the US FDA.

OBJECTIVE

SGLT2 inhibitors were designed based on dioxabicyclo[3.2.1] octane with the aim to search new lead molecule.

METHODS

The molecular structures were drawn in ChemBiodraw ultra and molecular docking study was performed by AutoDock Vina 1.5.6 software. The LogP and toxicity were predicted online using AlogP and Lazar in-silico respectively.

RESULTS

Among all the designed molecules, SK306 showed the maximum binding affinity against the 3dh4 SGLT2 protein of Vibrio parahaemolyticus. LogP values were also calculated in order to determine the lipophilic property of the best binding molecules which show LogP 2.82-3.79 in the range for good absorption and elimination, also predicted to be non-toxic.

CONCLUSION

SGLT2 inhibitors were designed based on the dioxabicyclo [3.2.1] octane resulting in a new lead molecule with high binding affinity; also these molecules were predicted to be noncarcinogenic with low LogP.

摘要

背景

糖尿病是全球高死亡率的主要原因之一。最近,钠-葡萄糖协同转运蛋白2(SGLT2)抑制剂在治疗糖尿病方面显示出有前景的结果,因此有几种分子已获得美国食品药品监督管理局(FDA)的批准。

目的

基于二氧杂双环[3.2.1]辛烷设计SGLT2抑制剂,旨在寻找新的先导分子。

方法

在ChemBiodraw ultra中绘制分子结构,并使用AutoDock Vina 1.5.6软件进行分子对接研究。分别使用ALOGP和Lazar在线预测LogP和毒性。

结果

在所有设计的分子中,SK306对副溶血性弧菌的3dh4 SGLT2蛋白表现出最大的结合亲和力。还计算了LogP值,以确定最佳结合分子的亲脂性,其LogP值在2.82 - 3.79范围内,有利于良好的吸收和消除,且预测为无毒。

结论

基于二氧杂双环[3.2.1]辛烷设计的SGLT2抑制剂产生了一种具有高结合亲和力的新先导分子;此外,这些分子预计无致癌性且LogP值较低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验