Suppr超能文献

广义条件域自适应:一种基于低秩翻译器的因果视角。

Generalized Conditional Domain Adaptation: A Causal Perspective With Low-Rank Translators.

出版信息

IEEE Trans Cybern. 2020 Feb;50(2):821-834. doi: 10.1109/TCYB.2018.2874219. Epub 2018 Oct 22.

Abstract

Learning domain adaptive features aims to enhance the classification performance of the target domain by exploring the discriminant information from an auxiliary source set. Let X denote the feature and Y as the label. The most typical problem to be addressed is that P has a so large variation between different domains that classification in the target domain is difficult. In this paper, we study the generalized conditional domain adaptation (DA) problem, in which both P and P change across domains, in a causal perspective. We propose transforming the class conditional probability matching to the marginal probability matching problem, under a proper assumption. We build an intermediate domain by employing a regression model. In order to enforce the most relevant data to reconstruct the intermediate representations, a low-rank constraint is placed on the regression model for regularization. The low-rank constraint underlines a global algebraic structure between different domains, and stresses the group compactness in representing the samples. The new model is considered under the discriminant subspace framework, which is favorable in simultaneously extracting the classification information from the source domain and adaptation information across domains. The model can be solved by an alternative optimization manner of quadratic programming and the alternative Lagrange multiplier method. To the best of our knowledge, this paper is the first to exploit low-rank representation, from the source domain to the intermediate domain, to learn the domain adaptive features. Comprehensive experimental results validate that the proposed method provides better classification accuracies with DA, compared with well-established baselines.

摘要

学习领域自适应特征旨在通过探索辅助源集中的判别信息来提高目标域的分类性能。令 X 表示特征,Y 表示标签。最典型的问题是 P 在不同领域之间存在很大的变化,以至于在目标领域进行分类很困难。在本文中,我们从因果的角度研究了广义条件领域自适应(DA)问题,其中 P 和 P 在不同的领域都发生了变化。我们提出在适当的假设下,将类条件概率匹配转换为边际概率匹配问题。我们通过使用回归模型来构建中间域。为了强制最相关的数据来重建中间表示,我们在回归模型上施加了低秩约束进行正则化。低秩约束强调了不同领域之间的全局代数结构,并强调了在表示样本时的组紧凑性。新模型是在判别子空间框架下考虑的,该框架有利于同时从源域中提取分类信息和跨域的自适应信息。该模型可以通过二次规划的交替优化方式和交替拉格朗日乘子法进行求解。据我们所知,本文首次利用源域到中间域的低秩表示来学习领域自适应特征。综合实验结果验证了与已有基线相比,所提出的方法在 DA 方面提供了更好的分类精度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验