Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale (LIB), F-75006, Paris, France.
Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina.
Comput Biol Med. 2018 Dec 1;103:101-108. doi: 10.1016/j.compbiomed.2018.10.006. Epub 2018 Oct 11.
Clinically, aortic geometry assessment is mainly based on the measurement of maximal diameters at different anatomic locations, which are subsequently used to indicate prophylactic aortic surgery. However, 3D evaluation of aortic morphology could provide volumetric quantification, which integrates both aortic dilatation and elongation and might thus be more sensitive to early geometric changes than diameters. Precise aortic morphology is also required for the calculation of pulse wave velocity (PWV), an established marker of aortic stiffness. Accordingly, we proposed a 3D semi-automated analysis of thoracic aorta MRI data optimizing morphological and subsequent stiffness assessment.
We studied 74 individuals (40 males, 50 ± 12years): 21 healthy volunteers and 53 patients with hypertension in whom aortic 3D MRI angiography and 2D + t phase-contrast and cine imaging were performed. A semi-automated method was proposed for volumetric aortic segmentation and was evaluated by studying resulting measurements (length, diameters, volumes and PWV) in terms of: 1) reproducibility, 2) correlations with well-established 2D aortic length and diameters, 3) associations with age, carotid-femoral PWV (cf-PWV) and presence of hypertension.
The measurements obtained with the proposed method were reproducible (coefficients of variation ≤ 5.1%) and were highly correlated with 2D measurements (arch length: r = 0.80, Bland-Altman mean bias [limits]: 2.7 mm [-25; 30]; PWV r = 0.95, 0.22 m/s [-1.9; 2.4]). Higher or similar correlations with age were found for the proposed 3D method compared to the 2D approach (arch length: r = 0.47 (2D), r = 0.60 (3D); PWV: r = 0.63 (2D), r = 0.64 (3D)). Moreover, a significant association was found between PWV and cf-PWV (r = 0.49, p < 0.001). All aortic measurements increased with hypertension (p < 0.05) and with age: arch length (+9mm/decade); diameters: ascending (+1.2mm/decade) and descending aorta (+1.0mm/decade); volumes: ascending (+2.6mL/decade) and descending aorta (+4.0mL/decade); PWV (+1.7 m s/decade).
A semi-automated method based on cylindrical active surfaces was proposed for the 3D segmentation of the aorta using a single MRI dataset, providing aortic diameters at anatomical landmarks, aortic volumes and the aortic centerline length used for PWV estimation. Such measurements were reproducible and comparable to expert measurements, which required time-consuming centerline delineation. Furthermore, expected relationships with age and hypertension were found indicating the consistency of our measurements.
临床上,主动脉几何形状的评估主要基于在不同解剖位置测量最大直径,随后这些直径用于指示预防性主动脉手术。然而,主动脉形态的 3D 评估可以提供容积量化,它综合了主动脉扩张和伸长,因此可能比直径更能敏感地反映早期的几何变化。精确的主动脉形态也需要计算脉搏波速度(PWV),PWV 是主动脉僵硬度的一个既定标志物。因此,我们提出了一种优化形态学和后续僵硬评估的胸主动脉 MRI 数据的 3D 半自动分析方法。
我们研究了 74 个人(40 名男性,50±12 岁):21 名健康志愿者和 53 名高血压患者,他们接受了主动脉 3D MRI 血管造影和 2D+t 相位对比和电影成像。提出了一种半自动方法用于主动脉容积分割,并通过研究以下方面评估了所得测量结果(长度、直径、体积和 PWV):1)可重复性,2)与成熟的 2D 主动脉长度和直径的相关性,3)与年龄、颈动脉-股动脉 PWV(cf-PWV)和高血压的相关性。
所提出的方法得到的测量结果具有可重复性(变异系数≤5.1%),并且与 2D 测量高度相关(弓部长度:r=0.80,Bland-Altman 平均偏差[范围]:2.7mm[-25;30];PWV r=0.95,0.22m/s[-1.9;2.4])。与 2D 方法相比,3D 方法与年龄的相关性更高或相似(弓部长度:r=0.47(2D),r=0.60(3D);PWV:r=0.63(2D),r=0.64(3D))。此外,还发现 PWV 与 cf-PWV 之间存在显著相关性(r=0.49,p<0.001)。所有主动脉测量值随高血压(p<0.05)和年龄增加而增加:弓部长度增加(每 10 年增加 9mm);直径:升主动脉(增加 1.2mm/10 年)和降主动脉(增加 1.0mm/10 年);体积:升主动脉(增加 2.6mL/10 年)和降主动脉(增加 4.0mL/10 年);PWV(增加 1.7m/s/10 年)。
提出了一种基于圆柱主动表面的半自动方法,用于使用单个 MRI 数据集对主动脉进行 3D 分割,提供解剖标志处的主动脉直径、主动脉体积和用于估计 PWV 的主动脉中心线长度。这些测量结果具有可重复性,并且与需要耗时的中心线描绘的专家测量结果相当。此外,还发现了与年龄和高血压的预期关系,表明我们的测量结果具有一致性。