École de Santé Publique de l'Université de Montréal (ESPUM), Montréal, Québec, Canada.
École de Santé Publique de l'Université de Montréal (ESPUM), Montréal, Québec, Canada; Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), Montréal, Québec, Canada.
Chemosphere. 2019 Jan;215:634-646. doi: 10.1016/j.chemosphere.2018.10.041. Epub 2018 Oct 8.
New generation of toxicological tests and assessment strategies require validated toxicokinetic data or models that are lacking for most chemicals. This study aimed at developing a quantitative property-property relationship (QPPR)-based human physiologically based pharmacokinetic (PBPK) modeling framework for high-throughput predictions of inhalation toxicokinetics of organic chemicals. A PBPK model was parameterized with QPPR-derived values for hepatic clearance (CL) and partition coefficients (P) [blood:air (P) and tissue:air (P) and tissue:blood (P)]. The model was initially applied to an evaluation dataset of 40 organic chemicals in the applicability domain, and then to an expanded dataset of 249 organic chemicals from diverse chemical classes. 'Batch' analyses were performed for rapid assessments of hundreds of chemicals. The simulations of inhalation toxicokinetics following an 8-h exposure to 1 ppm of each chemical were successful. The mean ratios of their predicted-to-experimental values were within a factor of 1.36-2.36 for P and 1.18 for CL, for 80% of the chemicals in the evaluation dataset. The predicted 24-h area under the venous blood concentration-time curve (AUC) values were within the predicted envelopes obtained while using experimental values of P and considering either no or maximal hepatic extraction. The reliability analysis (based on combined sensitivity and uncertainty analyses) indicated that AUC predictions for 55% of the expanded dataset were moderately to highly reliable, with 46% exhibiting highly reliable values. Overall, the modeling framework suggests that molecular structure and chemical properties can together be effectively used to obtain first-cut estimates of the toxicokinetics of data-poor organic chemicals for screening and prioritization purposes.
新一代的毒理学测试和评估策略需要经过验证的毒代动力学数据或模型,但大多数化学物质都缺乏这些数据或模型。本研究旨在开发一种基于定量构效关系(QPPR)的高通量预测有机化学物质吸入毒代动力学的人体生理药代动力学(PBPK)建模框架。该 PBPK 模型的参数化使用了源自 QPPR 的肝清除率(CL)和分配系数(P)[血:气(P)和组织:气(P)和组织:血(P)]值。该模型最初应用于适用性域内的 40 种有机化学物质的评估数据集,然后应用于来自不同化学类别的 249 种有机化学物质的扩展数据集。“批量”分析用于快速评估数百种化学物质。成功模拟了每种化学物质在 1ppm 浓度下 8 小时吸入暴露后的吸入毒代动力学。对于评估数据集中 80%的化学物质,其预测值与实验值的比值在 P 的 1.36-2.36 倍和 CL 的 1.18 倍之间。对于 80%的化学物质,预测的 24 小时静脉血浓度-时间曲线下面积(AUC)值在使用 P 的实验值且考虑无或最大肝提取的情况下获得的预测包络内。可靠性分析(基于综合敏感性和不确定性分析)表明,扩展数据集中 55%的 AUC 预测值具有中等至高度可靠性,其中 46%具有高度可靠性值。总体而言,该建模框架表明,分子结构和化学性质可以一起有效地用于为筛选和优先级目的获得数据不足的有机化学物质的毒代动力学的初步估计。