Köcher S S, Schleker P P M, Graf M F, Eichel R-A, Reuter K, Granwehr J, Scheurer Ch
Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany; Institute of Energy and Climate Research (IEK-9), Forschungszentrum Jülich, 52425 Jülich, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074 Aachen, Germany.
Institute of Energy and Climate Research (IEK-9), Forschungszentrum Jülich, 52425 Jülich, Germany; Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany.
J Magn Reson. 2018 Dec;297:33-41. doi: 10.1016/j.jmr.2018.10.003. Epub 2018 Oct 9.
For studying electrode and electrolyte materials for lithium ion batteries, solid-state (SS) nuclear magnetic resonance (NMR) of lithium moves into focus of current research. Theoretical simulations of magnetic resonance parameters facilitate the analysis and interpretation of experimental Li SS-NMR spectra and provide unique insight into physical and chemical processes that are determining the spectral profile. In the present paper, the accuracy and reliability of the theoretical simulation methods of Li chemical shielding values is benchmarked by establishing a reference scale for Li SS-NMR of diamagnetic compounds. The impact of geometry, ionic mobility and relativity are discussed. Eventually, the simulation methods are applied to the more complex lithium titanate spinel (LiTiO, LTO), which is a widely discussed battery anode material. Simulation of the Li SS-NMR spectrum shows that the commonly adopted approach of assigning the resonances to individual crystallographic sites is not unambiguous.
对于锂离子电池电极和电解质材料的研究而言,锂的固态(SS)核磁共振(NMR)成为当前研究的焦点。磁共振参数的理论模拟有助于分析和解释实验性锂固态核磁共振谱,并为决定光谱特征的物理和化学过程提供独特见解。在本文中,通过建立抗磁性化合物锂固态核磁共振的参考标度,对锂化学屏蔽值理论模拟方法的准确性和可靠性进行了基准测试。讨论了几何结构、离子迁移率和相对论效应的影响。最后,将模拟方法应用于更复杂的钛酸锂尖晶石(LiTiO,LTO),它是一种广泛讨论的电池负极材料。锂固态核磁共振谱的模拟表明,将共振峰分配到各个晶体学位置的常用方法并不明确。