Prinz Jeanette, Koohi-Moghadam Mohamad, Sun Hongzhe, Kocher Jean-Pierre A, Wang Junwen
Department of Health Sciences Research and Center for Individualized Medicine, Mayo Clinic, Scottsdale, Arizona, USA.
Department of Chemistry, The University of Hong Kong, Hong Kong, SAR, China.
Hum Hered. 2018;83(2):79-91. doi: 10.1159/000492574. Epub 2018 Oct 22.
We propose a novel machine learning approach to expand the knowledge about drug-target interactions. Our method may help to develop effective, less harmful treatment strategies and to enable the detection of novel indications for existing drugs.
We developed a novel machine learning strategy to predict drug-target interactions based on drug side effects and traits from genome-wide association studies. We integrated data from the databases SIDER and GWASdb and utilized them in a unique way by a neural network approach.
We validate our method using drug-target interactions from the STITCH database. In addition, we compare the chemical similarity of the predicted target to known targets of the drug under consideration and present literature-based evidence for predicted interactions. We find drug combination warnings for drugs we predict to target the same protein, hinting to synergistic effects aggravating harmful events. This substantiates the translational value of our approach, because we are able to detect drugs that should be taken together with care due to common mechanisms of action.
Taken together, we conclude that our approach is able to generate a novel and clinically applicable insight into the molecular determinants of drug action.
我们提出一种新颖的机器学习方法,以拓展关于药物 - 靶点相互作用的知识。我们的方法可能有助于制定有效、危害较小的治疗策略,并能够检测现有药物的新适应症。
我们开发了一种基于药物副作用和全基因组关联研究特征来预测药物 - 靶点相互作用的新颖机器学习策略。我们整合了来自SIDER和GWASdb数据库的数据,并通过神经网络方法以独特方式利用这些数据。
我们使用来自STITCH数据库的药物 - 靶点相互作用对我们的方法进行了验证。此外,我们比较了预测靶点与所考虑药物已知靶点的化学相似性,并提供了基于文献的预测相互作用证据。我们发现了针对我们预测靶向同一蛋白质的药物的药物组合警告,这暗示了协同作用会加剧有害事件。这证实了我们方法的转化价值,因为我们能够检测出由于共同作用机制而应谨慎联合使用的药物。
综上所述,我们得出结论,我们的方法能够对药物作用的分子决定因素产生新颖且临床适用的见解。