Suppr超能文献

硝酰酯酶 PtNIT1 可代谢杨树中取食诱导的腈。

The nitrilase PtNIT1 catabolizes herbivore-induced nitriles in Populus trichocarpa.

机构信息

Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany.

Present Address: Michael Smith Laboratories, University of British Columbia, Vancouver, Canada.

出版信息

BMC Plant Biol. 2018 Oct 22;18(1):251. doi: 10.1186/s12870-018-1478-z.

Abstract

BACKGROUND

Nitrilases are nitrile-converting enzymes commonly found within the plant kingdom that play diverse roles in nitrile detoxification, nitrogen recycling, and phytohormone biosynthesis. Although nitrilases are present in all higher plants, little is known about their function in trees. Upon herbivory, poplars produce considerable amounts of toxic nitriles such as benzyl cyanide, 2-methylbutyronitrile, and 3-methylbutyronitrile. In addition, as byproduct of the ethylene biosynthetic pathway upregulated in many plant species after herbivory, toxic β-cyanoalanine may accumulate in damaged poplar leaves. In this work, we studied the nitrilase gene family in Populus trichocarpa and investigated the potential role of the nitrilase PtNIT1 in the catabolism of herbivore-induced nitriles.

RESULTS

A BLAST analysis revealed three putative nitrilase genes (PtNIT1, PtNIT2, PtNIT3) in the genome of P. trichocarpa. While PtNIT1 was expressed in poplar leaves and showed increased transcript accumulation after leaf herbivory, PtNIT2 and PtNIT3 appeared not to be expressed in undamaged or herbivore-damaged leaves. Recombinant PtNIT1 produced in Escherichia coli accepted biogenic nitriles such as β-cyanoalanine, benzyl cyanide, and indole-3-acetonitrile as substrates in vitro and converted them into the corresponding acids. In addition to this nitrilase activity, PtNIT1 showed nitrile hydratase activity towards β-cyanoalanine, resulting in the formation of the amino acid asparagine. The kinetic parameters of PtNIT1 suggest that the enzyme utilizes β-cyanoalanine and benzyl cyanide as substrates in vivo. Indeed, β-cyanoalanine and benzyl cyanide were found to accumulate in herbivore-damaged poplar leaves. The upregulation of ethylene biosynthesis genes after leaf herbivory indicates that herbivore-induced β-cyanoalanine accumulation is likely caused by ethylene formation.

CONCLUSIONS

Our data suggest a role for PtNIT1 in the catabolism of herbivore-induced β-cyanoalanine and benzyl cyanide in poplar leaves.

摘要

背景

腈水解酶是植物界中常见的将腈转化为酶,在腈解毒、氮循环和植物激素生物合成中发挥着多样化的作用。尽管腈水解酶存在于所有高等植物中,但对其在树木中的功能知之甚少。在受到食草动物侵害后,杨树会产生大量的有毒腈,如苯甲腈、2-甲基丁腈和 3-甲基丁腈。此外,作为许多植物物种在受到食草动物侵害后上调的乙烯生物合成途径的副产物,有毒的β-氰基丙氨酸可能会在受损的杨树叶中积累。在这项工作中,我们研究了毛白杨中的腈水解酶基因家族,并研究了腈水解酶 PtNIT1 在食草动物诱导的腈代谢中的潜在作用。

结果

BLAST 分析显示,在毛白杨基因组中存在三个假定的腈水解酶基因(PtNIT1、PtNIT2、PtNIT3)。虽然 PtNIT1 在杨树叶片中表达,并在叶片受到食草动物侵害后转录本积累增加,但 PtNIT2 和 PtNIT3 似乎在未受损或受食草动物侵害的叶片中不表达。在大肠杆菌中表达的重组 PtNIT1 可接受生物源性腈,如β-氰基丙氨酸、苯甲腈和吲哚-3-乙腈作为体外底物,并将其转化为相应的酸。除了这种腈水解酶活性外,PtNIT1 对β-氰基丙氨酸还表现出腈水解酶活性,导致天冬酰胺的形成。PtNIT1 的动力学参数表明,该酶在体内利用β-氰基丙氨酸和苯甲腈作为底物。事实上,β-氰基丙氨酸和苯甲腈在受食草动物侵害的杨树叶中积累。叶片受到食草动物侵害后,乙烯生物合成基因的上调表明,食草动物诱导的β-氰基丙氨酸积累可能是由乙烯形成引起的。

结论

我们的数据表明,PtNIT1 在杨树叶片中食草动物诱导的β-氰基丙氨酸和苯甲腈的代谢中起作用。

相似文献

1
The nitrilase PtNIT1 catabolizes herbivore-induced nitriles in Populus trichocarpa.
BMC Plant Biol. 2018 Oct 22;18(1):251. doi: 10.1186/s12870-018-1478-z.
2
Alternative Pathway for 3-Cyanoalanine Assimilation in Pseudomonas pseudoalcaligenes CECT5344 under Noncyanotrophic Conditions.
Microbiol Spectr. 2021 Dec 22;9(3):e0077721. doi: 10.1128/Spectrum.00777-21. Epub 2021 Nov 3.
4
Increased β-cyanoalanine nitrilase activity improves cyanide tolerance and assimilation in Arabidopsis.
Mol Plant. 2014 Jan;7(1):231-43. doi: 10.1093/mp/sst110. Epub 2013 Jul 3.
5
Cyanide metabolism in higher plants: cyanoalanine hydratase is a NIT4 homolog.
Plant Mol Biol. 2006 May;61(1-2):111-22. doi: 10.1007/s11103-005-6217-9.
7
A Cyanide-Induced 3-Cyanoalanine Nitrilase in the Cyanide-Assimilating Bacterium Pseudomonas pseudoalcaligenes Strain CECT 5344.
Appl Environ Microbiol. 2017 Apr 17;83(9). doi: 10.1128/AEM.00089-17. Print 2017 May 1.
8
Evolution of nitrilases in glucosinolate-containing plants.
Phytochemistry. 2009 Oct-Nov;70(15-16):1680-6. doi: 10.1016/j.phytochem.2009.07.028. Epub 2009 Aug 19.
9
Evolution of heteromeric nitrilase complexes in Poaceae with new functions in nitrile metabolism.
Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18848-53. doi: 10.1073/pnas.0709315104. Epub 2007 Nov 14.
10
Separate Pathways Contribute to the Herbivore-Induced Formation of 2-Phenylethanol in Poplar.
Plant Physiol. 2019 Jun;180(2):767-782. doi: 10.1104/pp.19.00059. Epub 2019 Mar 7.

引用本文的文献

2
Metabolic link between auxin production and specialized metabolites in Sorghum bicolor.
J Exp Bot. 2023 Jan 1;74(1):364-376. doi: 10.1093/jxb/erac421.
3
Screening and characterization of a nitrilase with significant nitrile hydratase activity.
Biotechnol Lett. 2022 Oct;44(10):1163-1173. doi: 10.1007/s10529-022-03291-6. Epub 2022 Sep 1.
4
Aldoximes are precursors of auxins in Arabidopsis and maize.
New Phytol. 2021 Aug;231(4):1449-1461. doi: 10.1111/nph.17447. Epub 2021 Jun 10.
5
Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy.
Plant Physiol. 2020 Sep;184(1):39-52. doi: 10.1104/pp.20.00433. Epub 2020 Jul 7.
6
GH3 Auxin-Amido Synthetases Alter the Ratio of Indole-3-Acetic Acid and Phenylacetic Acid in Arabidopsis.
Plant Cell Physiol. 2020 Mar 1;61(3):596-605. doi: 10.1093/pcp/pcz223.

本文引用的文献

1
Distinct Characteristics of Indole-3-Acetic Acid and Phenylacetic Acid, Two Common Auxins in Plants.
Plant Cell Physiol. 2015 Aug;56(8):1641-54. doi: 10.1093/pcp/pcv088. Epub 2015 Jun 14.
4
Herbivore-induced volatile emission in black poplar: regulation and role in attracting herbivore enemies.
Plant Cell Environ. 2014 Aug;37(8):1909-23. doi: 10.1111/pce.12287. Epub 2014 Mar 19.
6
MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.
Mol Biol Evol. 2013 Dec;30(12):2725-9. doi: 10.1093/molbev/mst197. Epub 2013 Oct 16.
7
Current understanding on ethylene signaling in plants: the influence of nutrient availability.
Plant Physiol Biochem. 2013 Dec;73:128-38. doi: 10.1016/j.plaphy.2013.09.011. Epub 2013 Sep 20.
8
NITRILASE1 regulates the exit from proliferation, genome stability and plant development.
New Phytol. 2013 May;198(3):685-698. doi: 10.1111/nph.12185. Epub 2013 Feb 25.
9
The β-cyanoalanine pathway is involved in the response to water deficit in Arabidopsis thaliana.
Plant Physiol Biochem. 2013 Feb;63:159-69. doi: 10.1016/j.plaphy.2012.11.012. Epub 2012 Nov 24.
10
Phytozome: a comparative platform for green plant genomics.
Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86. doi: 10.1093/nar/gkr944. Epub 2011 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验