Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany.
Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
Plant Physiol. 2019 Jun;180(2):767-782. doi: 10.1104/pp.19.00059. Epub 2019 Mar 7.
Upon herbivory, the tree species western balsam poplar () produces a variety of Phe-derived metabolites, including 2-phenylethylamine, 2-phenylethanol, and 2-phenylethyl-β-d-glucopyranoside. To investigate the formation of these potential defense compounds, we functionally characterized aromatic l-amino acid decarboxylases (AADCs) and aromatic aldehyde synthases (AASs), which play important roles in the biosynthesis of specialized aromatic metabolites in other plants. Heterologous expression in and showed that all five / genes identified in the genome encode active enzymes. However, only two genes, and , were significantly upregulated after leaf herbivory. Despite a sequence similarity of ∼96%, PtAADC1 and PtAAS1 showed different enzymatic functions and converted Phe into 2-phenylethylamine and 2-phenylacetaldehyde, respectively. The activities of both enzymes were interconvertible by switching a single amino acid residue in their active sites. A survey of putative / gene pairs in the genomes of other plants suggests an independent evolution of this function-determining residue in different plant families. RNA interference -mediated-downregulation of in gray poplar ( × ) resulted in decreased accumulation of 2-phenylethylamine and 2-phenylethyl-β-d-glucopyranoside, whereas the emission of 2-phenylethanol was not influenced. To investigate the last step of 2-phenylethanol formation, we identified and characterized two short-chain dehydrogenases, PtPAR1 and PtPAR2, which were able to reduce 2-phenylacetaldehyde to 2-phenylethanol in vitro. In summary, 2-phenylethanol and its glucoside may be formed in multiple ways in poplar. Our data indicate that PtAADC1 controls the herbivore-induced formation of 2-phenylethylamine and 2-phenylethyl-β-d-glucopyranoside in planta, whereas PtAAS1 likely contributes to the herbivore-induced emission of 2-phenylethanol.
在食草作用下,西洋滨藜()产生多种苯丙氨酸衍生代谢物,包括 2-苯乙胺、2-苯乙醇和 2-苯乙基-β-d-吡喃葡萄糖苷。为了研究这些潜在防御化合物的形成,我们对芳香族 l-氨基酸脱羧酶(AADCs)和芳香族醛合酶(AASs)进行了功能表征,它们在其他植物中特化芳香代谢物的生物合成中发挥着重要作用。在 和 中的异源表达表明,在 基因组中鉴定的 5 个 / 基因均编码活性酶。然而,只有 2 个基因,和 ,在叶片食草后显著上调。尽管 PtAADC1 和 PtAAS1 的序列相似性约为 96%,但它们具有不同的酶功能,分别将苯丙氨酸转化为 2-苯乙胺和 2-苯乙醛。通过在其活性位点中切换单个氨基酸残基,可以使这两种酶的活性相互转换。对其他植物基因组中假定的 / 基因对的调查表明,该功能决定残基在不同植物科中的独立进化。灰杨(×)中 的 RNA 干扰介导的下调导致 2-苯乙胺和 2-苯乙基-β-d-吡喃葡萄糖苷的积累减少,而 2-苯乙醇的排放不受影响。为了研究 2-苯乙醇形成的最后一步,我们鉴定并表征了两个 PtPAR1 和 PtPAR2,它们能够在体外将 2-苯乙醛还原为 2-苯乙醇。总之,在杨树上,2-苯乙醇及其糖苷可能以多种方式形成。我们的数据表明,PtAADC1 控制着植物中 2-苯乙胺和 2-苯乙基-β-d-吡喃葡萄糖苷的食草诱导形成,而 PtAAS1 可能有助于食草诱导的 2-苯乙醇的排放。