Suppr超能文献

正矩阵分解:一种基于直接质谱的呼吸分析数据预处理策略。

Positive matrix factorization: A data preprocessing strategy for direct mass spectrometry-based breath analysis.

机构信息

Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China; Atmospheric Pollution Online Source Analysis Engineering Research Center of Guangdong Province, Jinan University, Guangzhou 510632, China.

School of Energy and Environment, City University of Hong Kong, Hong Kong, China; State Environmental Protection Key Laboratory of the Cause and Prevention of Urban Air Pollution Complex, Shanghai 200233, China.

出版信息

Talanta. 2019 Jan 15;192:32-39. doi: 10.1016/j.talanta.2018.09.020. Epub 2018 Sep 10.

Abstract

Interest in exhaled breath has grown considerably in recent years, as breath biosampling has shown promise for non-invasive disease diagnosis, therapeutic drug monitoring, and environmental exposure. Real time breath analysis can be accomplished via direct online mass spectrometry (MS)-based methods, which can provide more accurate and detailed data and an enhanced understanding of the temporal evolution of exhaled VOCs in the breath; however, the complicated chemical composition and large raw datasets involved in breath analysis have hindered the discovery of sources contributing to the exhaled VOCs. The positive matrix factorization (PMF) receptor model has been widely used for source apportionment in atmospheric studies. Since the exhaled VOCs contain compounds from various sources, such as alveolar air, mouth air and respiratory dead-space air, PMF may be also helpful for source apportionment of exhaled VOCs in the breath. Thus, this study explores the application of PMF in the pretreatment of direct breath measurement data. The results indicate that (i) endogenous compounds and background contaminants sources can be readily distinguished by PMF in data obtained from replicate measurements of human exhaled breath at single time points (~30 s/measurement), which may benefit both exhalome investigations and the identification of exposure biomarkers; (ii) sources resolved from online measurement data collected over longer periods (1.5 h) can be used to isolate the evolution of exhaled VOCs and investigate processes such as the pharmacokinetics of ketamine and its major metabolites. Therefore, PMF has shown promise for both data processing and subsequent data mining for the ambient MS-based breath analysis.

摘要

近年来,呼气分析技术引起了广泛关注,因为呼吸生物标志物采样技术有望实现疾病的非侵入性诊断、治疗药物监测和环境暴露检测。实时呼气分析可以通过直接在线质谱(MS)方法来完成,该方法可以提供更准确和详细的数据,并增强对呼气挥发性有机化合物(VOC)随时间演变的理解;然而,呼气分析中涉及的复杂化学成分和大量原始数据集阻碍了对导致呼气 VOC 的来源的发现。正矩阵因子分解(PMF)受体模型已广泛用于大气研究中的源解析。由于呼气 VOC 包含来自肺泡气、口腔气和呼吸死腔气等各种来源的化合物,因此 PMF 也可能有助于解析呼气 VOC 的来源。因此,本研究探讨了 PMF 在直接呼吸测量数据预处理中的应用。结果表明:(i)PMF 可以轻松区分重复测量单个时间点(~30 秒/次)的人体呼气中内源性化合物和背景污染物来源,这可能有利于呼气组学研究和暴露生物标志物的识别;(ii)从在线测量数据中解析出的源可以用于分离呼气 VOC 的演变,并研究药物动力学等过程,例如氯胺酮及其主要代谢物。因此,PMF 有望用于基于 MS 的环境呼气分析的数据处理和后续数据挖掘。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验