Suppr超能文献

甲烷负载的成熟和未成熟干酪根的压弹性能的分子模拟研究。

Poroelasticity of Methane-Loaded Mature and Immature Kerogen from Molecular Simulations.

机构信息

Aix Marseille Univ., CNRS, CINaM , Campus de Luminy , Marseille 13288 , France.

Institut des Sciences Moléculaires , Univ. Bordeaux, CNRS, UMR 5255 , 351 Cours de la libération , Talence 33405 , France.

出版信息

Langmuir. 2018 Nov 13;34(45):13766-13780. doi: 10.1021/acs.langmuir.8b02534. Epub 2018 Oct 31.

Abstract

While hydrocarbon expulsion from kerogen is certainly the key step in shale oil/gas recovery, the poromechanical couplings governing this desorption process, taking place under a significant pressure gradient, are still poorly understood. Especially, most molecular simulation investigations of hydrocarbon adsorption and transport in kerogen have so far been performed under the rigid matrix approximation, implying that the pore space is independent of pressure, temperature, and fluid loading, or in other words, neglecting poromechanics. Here, using two hydrogenated porous carbon models as proxies for immature and overmature kerogen, that is, highly aliphatic hydrogen-rich vs highly aromatic hydrogen-poor models, we perform an extensive molecular-dynamics-based investigation of the evolution of the poroelastic properties of those matrices with respect to temperature, external pressure, and methane loading as a prototype alkane molecule. The rigid matrix approximation is shown to hold reasonably well for overmature kerogen even though accounting for flexibility has allowed us to observe the well-known small volume contraction at low fluid loading and temperature. Our results demonstrate that immature kerogen is highly deformable. Within the ranges of conditions considered in this work, its density can double and its accessible porosity (to a methane molecule) can increase from 0 to ∼30%. We also show that these deformations are significantly nonaffine (i.e., nonhomogeneous), especially upon fluid adsorption or desorption.

摘要

虽然烃类从干酪根中的排出肯定是页岩油/气回收的关键步骤,但在很大压力梯度下控制这种解吸过程的孔隙弹性耦合仍然知之甚少。特别是,迄今为止,大多数关于干酪根中烃类吸附和传输的分子模拟研究都是在刚性基质近似下进行的,这意味着孔隙空间独立于压力、温度和流体负载,或者换句话说,忽略了孔隙力学。在这里,我们使用两个氢化多孔碳模型作为未成熟和过成熟干酪根的替代品,即高度脂肪族富氢和高度芳香族贫氢模型,我们基于分子动力学对这些基质的孔隙弹性特性随温度、外部压力和甲烷负载(以原型烷烃分子为例)的演变进行了广泛的研究。刚性基质近似对于过成熟的干酪根来说保持得相当好,尽管考虑到灵活性使我们能够观察到在低流体负载和温度下已知的小体积收缩。我们的结果表明,未成熟的干酪根具有很高的可变形性。在本工作中考虑的条件范围内,其密度可以增加一倍,并且其可及孔隙率(对甲烷分子)可以从 0 增加到约 30%。我们还表明,这些变形是非仿射的(即不均匀的),特别是在流体吸附或解吸时。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验