MultiScale Material Science for Energy and Environment (<MSE>), Massachusetts Institute of Technology, Cambridge, MA 02139;
MultiScale Material Science for Energy and Environment (<MSE>), Massachusetts Institute of Technology, Cambridge, MA 02139.
Proc Natl Acad Sci U S A. 2018 Dec 4;115(49):12365-12370. doi: 10.1073/pnas.1808402115. Epub 2018 Nov 15.
Organic matter is responsible for the generation of hydrocarbons during the thermal maturation of source rock formation. This geochemical process engenders a network of organic hosted pores that governs the flow of hydrocarbons from the organic matter to fractures created during the stimulation of production wells. Therefore, it can be reasonably assumed that predictions of potentially recoverable confined hydrocarbons depend on the geometry of this pore network. Here, we analyze mesoscale structures of three organic porous networks at different thermal maturities. We use electron tomography with subnanometric resolution to characterize their morphology and topology. Our 3D reconstructions confirm the formation of nanopores and reveal increasingly tortuous and connected pore networks in the process of thermal maturation. We then turn the binarized reconstructions into lattice models including information from atomistic simulations to derive mechanical and confined fluid transport properties. Specifically, we highlight the influence of adsorbed fluids on the elastic response. The resulting elastic energy concentrations are localized at the vicinity of macropores at low maturity whereas these concentrations present more homogeneous distributions at higher thermal maturities, due to pores' topology. The lattice models finally allow us to capture the effect of sorption on diffusion mechanisms with a sole input of network geometry. Eventually, we corroborate the dominant impact of diffusion occurring within the connected nanopores, which constitute the limiting factor of confined hydrocarbon transport in source rocks.
有机质是烃源岩热成熟过程中生成烃类的原因。该地球化学过程产生了有机孔网络,控制着烃类从有机质向生产井增产过程中形成的裂缝中的流动。因此,可以合理地假设,潜在可回收的受约束烃类的预测取决于该孔网络的几何形状。在这里,我们分析了三种不同热成熟度的有机多孔网络的介观结构。我们使用具有亚纳米分辨率的电子断层扫描技术来表征它们的形态和拓扑结构。我们的 3D 重建证实了纳米孔的形成,并揭示了在热成熟过程中孔网络变得越来越曲折和连通。然后,我们将二值化的重建转换为包含原子模拟信息的晶格模型,以得出力学和受约束的流体输运性质。具体来说,我们强调了吸附流体对弹性响应的影响。在低成熟度时,弹性能量浓度集中在大孔附近,而在较高的热成熟度时,由于孔的拓扑结构,这些浓度呈现出更均匀的分布。晶格模型最终允许我们仅通过网络几何形状的输入来捕捉吸附对扩散机制的影响。最终,我们证实了扩散在连接的纳米孔内发生的主导作用,这是控制源岩中受约束烃类输运的限制因素。