Suppr超能文献

将形态和体内骨骼活动性与数字模型相结合,以推断海星腕部的功能。

Integrating morphology and in vivo skeletal mobility with digital models to infer function in brittle star arms.

机构信息

Department of Geology and Geophysics, Yale University, New Haven, CT, USA.

Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hertfordshire, UK.

出版信息

J Anat. 2018 Dec;233(6):696-714. doi: 10.1111/joa.12887. Epub 2018 Oct 23.

Abstract

Brittle stars (Phylum Echinodermata, Class Ophiuroidea) have evolved rapid locomotion employing muscle and skeletal elements within their (usually) five arms to apply forces in a manner analogous to that of vertebrates. Inferring the inner workings of the arm has been difficult as the skeleton is internal and many of the ossicles are sub-millimeter in size. Advances in 3D visualization and technology have made the study of movement in ophiuroids possible. We developed six virtual 3D skeletal models to demonstrate the potential range of motion of the main arm ossicles, known as vertebrae, and six virtual 3D skeletal models of non-vertebral ossicles. These models revealed the joint center and relative position of the arm ossicles during near-maximal range of motion. The models also provide a platform for the comparative evaluation of functional capabilities between disparate ophiuroid arm morphologies. We made observations on specimens of Ophioderma brevispina and Ophiothrix angulata. As these two taxa exemplify two major morphological categories of ophiuroid vertebrae, they provide a basis for an initial assessment of the functional consequences of these disparate vertebral morphologies. These models suggest potential differences in the structure of the intervertebral articulations in these two species, implying disparities in arm flexion mechanics. We also evaluated the differences in the range of motion between segments in the proximal and distal halves of the arm length in a specimen of O. brevispina, and found that the morphology of vertebrae in the distal portion of the arm allows for higher mobility than in the proximal portion. Our models of non-vertebral ossicles show that they rotate further in the direction of movement than the vertebrae themselves in order to accommodate arm flexion. These findings raise doubts over previous hypotheses regarding the functional consequences of ophiuroid arm disparity. Our study demonstrates the value of integrating experimental data and visualization of articulated structures when making functional interpretations instead of relying on observations of vertebral or segmental morphology alone. This methodological framework can be applied to other ophiuroid taxa to enable comparative functional analyses. It will also facilitate biomechanical analyses of other invertebrate groups to illuminate how appendage or locomotor function evolved.

摘要

海星(棘皮动物门,蛇尾纲)通过其通常的 5 条腕中肌肉和骨骼元素的快速运动来施加力,其方式类似于脊椎动物。由于骨骼是内部的,并且许多小骨的尺寸都小于 1 毫米,因此很难推断出腕的内部工作原理。3D 可视化和技术的进步使蛇尾类动物的运动研究成为可能。我们开发了六个虚拟的 3D 骨骼模型,以演示主要腕骨小骨(称为脊椎骨)的潜在运动范围,以及六个非脊椎骨小骨的虚拟 3D 骨骼模型。这些模型揭示了在近最大运动范围内臂骨小骨的关节中心和相对位置。这些模型还为比较不同蛇尾类动物臂形态之间的功能能力提供了一个平台。我们对短腕蛇尾(Ophioderma brevispina)和角蛇尾(Ophiothrix angulata)的标本进行了观察。由于这两个分类单元代表了蛇尾类动物脊椎骨的两个主要形态类别,因此它们为评估这些不同脊椎骨形态的功能后果提供了基础。这些模型表明,在这两个物种的椎间关节结构中可能存在潜在的差异,这意味着臂弯曲力学的差异。我们还评估了短腕蛇尾标本的臂长近侧和远侧段之间的运动范围差异,发现臂远侧部分的脊椎骨形态允许更高的灵活性,而近侧部分则不允许。我们的非脊椎骨小骨模型表明,它们在朝向运动的方向上旋转的角度比脊椎骨本身更大,以适应臂弯曲。这些发现对以前关于蛇尾类动物臂差异的功能后果的假设提出了质疑。我们的研究表明,在进行功能解释时,整合实验数据和铰接结构的可视化比仅依赖于对脊椎骨或节段形态的观察更有价值。这种方法框架可以应用于其他蛇尾类动物分类单元,以实现比较功能分析。它还将促进对其他无脊椎动物群体的生物力学分析,以阐明附肢或运动功能是如何进化的。

相似文献

6
Three-dimensional visualization as a tool for interpreting locomotion strategies in ophiuroids from the Devonian Hunsrück Slate.
R Soc Open Sci. 2020 Dec 23;7(12):201380. doi: 10.1098/rsos.201380. eCollection 2020 Dec.
7
Microstructural roughness of skeletal calcite in ophiuroid vertebral ossicles: evidence of wear?
Tissue Cell. 1995 Oct;27(5):539-43. doi: 10.1016/s0040-8166(05)80062-x.
8
A methodological exploration to study 2D arm kinematics in Ophiuroidea (Echinodermata).
Front Zool. 2023 Apr 21;20(1):15. doi: 10.1186/s12983-023-00495-y.

引用本文的文献

1
A methodological exploration to study 2D arm kinematics in Ophiuroidea (Echinodermata).
Front Zool. 2023 Apr 21;20(1):15. doi: 10.1186/s12983-023-00495-y.
2
Back to life: Techniques for developing high-quality 3D reconstructions of plants and animals from digitized specimens.
PLoS One. 2023 Mar 29;18(3):e0283027. doi: 10.1371/journal.pone.0283027. eCollection 2023.
4
Three-dimensional visualization as a tool for interpreting locomotion strategies in ophiuroids from the Devonian Hunsrück Slate.
R Soc Open Sci. 2020 Dec 23;7(12):201380. doi: 10.1098/rsos.201380. eCollection 2020 Dec.
5
Arm waving in stylophoran echinoderms: three-dimensional mobility analysis illuminates cornute locomotion.
R Soc Open Sci. 2020 Jun 10;7(6):200191. doi: 10.1098/rsos.200191. eCollection 2020 Jun.
6
Morphology, shape variation and movement of skeletal elements in starfish (Asterias rubens).
J Anat. 2019 May;234(5):656-667. doi: 10.1111/joa.12964. Epub 2019 Mar 12.

本文引用的文献

1
Bioinspired materials for regenerative medicine: going beyond the human archetypes.
J Mater Chem B. 2016 Apr 14;4(14):2396-2406. doi: 10.1039/c5tb02634b. Epub 2016 Feb 18.
2
A brittle star-like robot capable of immediately adapting to unexpected physical damage.
R Soc Open Sci. 2017 Dec 13;4(12):171200. doi: 10.1098/rsos.171200. eCollection 2017 Dec.
3
Water vascular system architecture in an Ordovician ophiuroid.
Biol Lett. 2017 Dec;13(12). doi: 10.1098/rsbl.2017.0635.
4
Forelimb muscle and joint actions in Archosauria: insights from (Pseudosuchia) and (Sauropodomorpha).
PeerJ. 2017 Nov 24;5:e3976. doi: 10.7717/peerj.3976. eCollection 2017.
5
An in vivo Comparative Study of Intersegmental Flexibility in the Ophiuroid Arm.
Biol Bull. 1997 Aug;193(1):77-89. doi: 10.2307/1542737.
7
Restructuring higher taxonomy using broad-scale phylogenomics: The living Ophiuroidea.
Mol Phylogenet Evol. 2017 Feb;107:415-430. doi: 10.1016/j.ympev.2016.12.006. Epub 2016 Dec 8.
9
Phylogenomic resolution of the class Ophiuroidea unlocks a global microfossil record.
Curr Biol. 2014 Aug 18;24(16):1874-9. doi: 10.1016/j.cub.2014.06.060. Epub 2014 Jul 24.
10
Ophiuroid robot that self-organizes periodic and non-periodic arm movements.
Bioinspir Biomim. 2012 Sep;7(3):034001. doi: 10.1088/1748-3182/7/3/034001. Epub 2012 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验