Pouchol Camille, Trélat Emmanuel
a Laboratoire Jacques-Louis Lions , Sorbonne Universités, Paris , France.
b INRIA Team Mamba , INRIA Paris , Paris , France.
J Biol Dyn. 2018 Dec;12(1):872-893. doi: 10.1080/17513758.2018.1515994.
We analyse the asymptotic behaviour of integro-differential equations modelling N populations in interaction, all structured by different traits. Interactions are modelled by non-local terms involving linear combinations of the total number of individuals in each population. These models have already been shown to be suitable for the modelling of drug resistance in cancer, and they generalize the usual Lotka-Volterra ordinary differential equations. Our aim is to give conditions under which there is persistence of all species. Through the analysis of a Lyapunov function, our first main result gives a simple and general condition on the matrix of interactions, together with a convergence rate. The second main result establishes another type of condition in the specific case of mutualistic interactions. When either of these conditions is met, we describe which traits are asymptotically selected.
我们分析了对相互作用的(N)个种群进行建模的积分 - 微分方程的渐近行为,所有种群都由不同特征构成。相互作用通过涉及每个种群个体总数线性组合的非局部项来建模。这些模型已被证明适用于癌症耐药性建模,并且推广了通常的洛特卡 - 沃尔泰拉常微分方程。我们的目标是给出所有物种持续存在的条件。通过对李雅普诺夫函数的分析,我们的第一个主要结果给出了关于相互作用矩阵的一个简单且通用的条件以及收敛速度。第二个主要结果在互利相互作用的特定情况下建立了另一种类型的条件。当满足这些条件中的任何一个时,我们描述哪些特征被渐近选择。