Suppr超能文献

具有反对称 Lotka-Volterra 系统的集合种群模型。

Metapopulation models with anti-symmetric Lotka-Volterra systems.

机构信息

KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Gent, Belgium.

Centre for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, South Korea.

出版信息

J Biol Dyn. 2024 Dec;18(1):2397404. doi: 10.1080/17513758.2024.2397404. Epub 2024 Sep 6.

Abstract

We consider different anti-symmetric Lotka-Volterra systems governing the pairwise interactions among the same species inhabiting spatially discrete habitat patches, with each patch having infinitely many equilibria. In the absence of inter-patch species migration, the species densities in each isolated patch evolve in periodic orbits. A central idea of this work is to design a control action to make the trajectories of the system asymptotically converge to a desired coexistence equilibrium among the infinitely many equilibrium points. We propose a scheme to simultaneously control different anti-symmetric Lotka-Volterra systems in multiple habitat patches by designing a metapopulation model. By introducing a suitable inter-patch migration of species, we prove that the trajectories of the resulting metapopulation model are effectively asymptotically converging to the desired coexistence equilibrium. The stability of the coexistence equilibrium is proved using Lyapunov methods coupled with LaSalle's invariance principle.

摘要

我们考虑了不同的反对称洛特卡-沃尔泰拉系统,这些系统控制着栖息在空间离散生境斑块中的同种生物之间的成对相互作用,每个斑块都有无数个平衡点。在没有斑块间物种迁移的情况下,每个隔离斑块中的物种密度会在周期轨道上演变。这项工作的一个核心思想是设计一种控制措施,使系统的轨迹渐近收敛到无限多个平衡点之间期望的共存平衡点。我们通过设计一个复合种群模型来提出一种同时控制多个生境斑块中不同反对称洛特卡-沃尔泰拉系统的方案。通过引入合适的斑块间物种迁移,我们证明了所得到的复合种群模型的轨迹能够有效地渐近收敛到期望的共存平衡点。使用拉塞尔不变原理结合李雅普诺夫方法证明了共存平衡点的稳定性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验