Cardiovascular Division, Department of Medicine, Harvard-Thorndike Electrophysiology Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (E.A., E.L., F.M.C.-V., J.W.W., P.J.Z., K.K., A.E.B.).
Department of Cardiology, Sint-Jan Hospital Bruges, Belgium (M.D., T.S.).
Circ Arrhythm Electrophysiol. 2018 Aug;11(8):e006536. doi: 10.1161/CIRCEP.118.006536.
Activation mapping of scar-related atrial tachycardias (ATs) can be difficult to interpret because of inaccurate time annotation of complex electrograms and passive diastolic activity. We examined whether integration of a vector map can help to describe patterns of propagation to better explain the mechanism and location of ATs.
The investigational mapping algorithm calculates vectors and applies physiological constraints of electrical excitation in human atrial tissue to determine the arrhythmia source and circuit. Phase I consisted of retrospective evaluation in 35 patients with ATs. Phase II consisted of prospective validation in 20 patients with ATs. Macroreentry was defined as a continuous propagation in a circular path >30 mm; localized reentry was defined as a circular path ≤30 mm; a focal source had a centrifugal spread from a point source.
In phase I, standard activation mapping identified 28 of 40 ATs (70%): 25 macroreentry and 3 focal tachycardias. In the remaining 12 ATs, the mechanism and location could not be identified by activation and required entrainment or empirical ablation for termination (radiofrequency time, 17.3±6.6 minutes). In comparison, the investigational algorithm identified 37 of 40 (92.5%) ATs, including 5 macroreentry, 3 localized reentry, and 1 focal AT not identified by standard mapping. It also predicted the successful termination site of all 37 of 40 ATs. In phase II, the investigational algorithm identified 12 macroreentry, 6 localized reentry, and 2 focal tachycardias that all terminated with limited ablation (3.2±1.7 minutes). It identified 3 macroreentry, 3 localized reentry, and 1 focal AT not well characterized by standard mapping. The diagnosis of localized reentry was supported by highly curved vectors, resetting with increasing curve and termination with limited ablation (22±6 s).
Activation mapping integrating vectors can help determine the arrhythmia mechanism and identify its critical components. It has particular value for identifying complex macroreentrant circuits and for differentiating a focal source from a localized reentry.
由于复杂的电图时间标注不准确和被动舒张活动,瘢痕相关房性心动过速(AT)的激活图的解释可能具有挑战性。我们研究了整合向量图是否有助于描述传播模式,从而更好地解释 AT 的机制和位置。
研究中的映射算法计算向量,并应用人体心房组织电兴奋的生理限制,以确定心律失常源和电路。第 I 阶段包括 35 例 AT 患者的回顾性评估。第 II 阶段包括 20 例 AT 患者的前瞻性验证。宏观折返定义为连续传播> 30mm 的圆形路径;局部折返定义为圆形路径≤30mm;焦点源具有从点源离心扩散的特征。
在第 I 阶段,标准激活图识别出 40 例 AT 中的 28 例(70%):25 例宏观折返和 3 例局灶性心动过速。在其余 12 例 AT 中,无法通过激活和需要拖带或经验性消融来终止(射频时间为 17.3±6.6 分钟)来识别其机制和位置。相比之下,研究中的算法识别出 40 例 AT 中的 37 例(92.5%),包括 5 例宏观折返、3 例局部折返和 1 例标准图无法识别的局灶性心动过速。它还预测了所有 40 例 AT 中的 37 例的成功终止部位。在第 II 阶段,研究中的算法识别出 12 例宏观折返、6 例局部折返和 2 例局灶性心动过速,所有这些都可以通过有限的消融来终止(3.2±1.7 分钟)。它识别出 3 例宏观折返、3 例局部折返和 1 例标准图无法很好描述的局灶性心动过速。局部折返的诊断得到高度弯曲的向量的支持,随着曲线的增加而重置,并通过有限的消融终止(22±6s)。
整合向量的激活图可以帮助确定心律失常的机制,并识别其关键成分。它对于识别复杂的宏观折返电路和区分局灶性心动过速与局部折返特别有价值。