State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an 710071, China.
Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, NE, 68588, USA.
Sensors (Basel). 2018 Oct 24;18(11):3616. doi: 10.3390/s18113616.
Edge computing is an extension of cloud computing that enables messages to be acquired and processed at low cost. Many terminal devices are being deployed in the edge network to sense and deal with the massive data. By migrating part of the computing tasks from the original cloud computing model to the edge device, the message is running on computing resources close to the data source. The edge computing model can effectively reduce the pressure on the cloud computing center and lower the network bandwidth consumption. However, the security and privacy issues in edge computing are worth noting. In this paper, we propose an efficient auto-correction retrieval scheme for data management in edge computing, named EARS-DM. With automatic error correction for the query keywords instead of similar words extension, EARS-DM can tolerate spelling mistakes and reduce the complexity of index storage space. By the combination of TF-IDF value of keywords and the syntactic weight of query keywords, keywords who are more important will obtain higher relevance scores. We construct an R-tree index building with the encrypted keywords and the children nodes of which are the encrypted identifier FID and Bloom filter BF of files who contain this keyword. The secure index will be uploaded to the edge computing and the search phrase will be performed by the edge computing which is close to the data source. Then EDs sort the matching encrypted file identifier FID by relevance scores and upload them to the cloud server (CS). Performance analysis with actual data indicated that our scheme is efficient and accurate.
边缘计算是云计算的一种扩展,它能够以低成本获取和处理消息。许多终端设备正在边缘网络中部署,以感知和处理海量数据。通过将部分计算任务从原始云计算模型迁移到边缘设备,消息在接近数据源的计算资源上运行。边缘计算模型可以有效地减轻云计算中心的压力,并降低网络带宽消耗。然而,边缘计算中的安全和隐私问题值得关注。在本文中,我们提出了一种用于边缘计算中数据管理的高效自动纠错检索方案,命名为 EARS-DM。通过对查询关键字进行自动纠错而不是同义词扩展,EARS-DM 可以容忍拼写错误,并降低索引存储空间的复杂性。通过关键字的 TF-IDF 值和查询关键字的语法权重的组合,更重要的关键字将获得更高的相关性得分。我们使用加密关键字和包含该关键字的文件的加密标识符 FID 和布隆过滤器 BF 的子节点构建 R 树索引。安全索引将被上传到边缘计算,靠近数据源的边缘计算将执行搜索短语。然后,EDs 根据相关性得分对匹配的加密文件标识符 FID 进行排序,并将它们上传到云服务器 (CS)。实际数据的性能分析表明,我们的方案是高效和准确的。