Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, China.
Departamento de Física, Universidad de Oviedo, Oviedo, Spain.
Nature. 2018 Oct;562(7728):557-562. doi: 10.1038/s41586-018-0618-9. Epub 2018 Oct 24.
Polaritons-hybrid light-matter excitations-enable nanoscale control of light. Particularly large polariton field confinement and long lifetimes can be found in graphene and materials consisting of two-dimensional layers bound by weak van der Waals forces (vdW materials). These polaritons can be tuned by electric fields or by material thickness, leading to applications including nanolasers, tunable infrared and terahertz detectors, and molecular sensors. Polaritons with anisotropic propagation along the surface of vdW materials have been predicted, caused by in-plane anisotropic structural and electronic properties. In such materials, elliptic and hyperbolic in-plane polariton dispersion can be expected (for example, plasmon polaritons in black phosphorus), the latter leading to an enhanced density of optical states and ray-like directional propagation along the surface. However, observation of anisotropic polariton propagation in natural materials has so far remained elusive. Here we report anisotropic polariton propagation along the surface of α-MoO, a natural vdW material. By infrared nano-imaging and nano-spectroscopy of semiconducting α-MoO flakes and disks, we visualize and verify phonon polaritons with elliptic and hyperbolic in-plane dispersion, and with wavelengths (up to 60 times smaller than the corresponding photon wavelengths) comparable to those of graphene plasmon polaritons and boron nitride phonon polaritons. From signal oscillations in real-space images we measure polariton amplitude lifetimes of 8 picoseconds, which is more than ten times larger than that of graphene plasmon polaritons at room temperature. They are also a factor of about four larger than the best values so far reported for phonon polaritons in isotopically engineered boron nitride and for graphene plasmon polaritons at low temperatures. In-plane anisotropic and ultra-low-loss polaritons in vdW materials could enable directional and strong light-matter interactions, nanoscale directional energy transfer and integrated flat optics in applications ranging from bio-sensing to quantum nanophotonics.
极化激元-混合光物质激发-实现纳米尺度的光控制。在石墨烯和由弱范德华力束缚的二维层组成的材料(范德华材料)中,可以找到特别大的极化激元场限制和长寿命。这些极化激元可以通过电场或材料厚度进行调谐,从而导致包括纳米激光器、可调谐红外和太赫兹探测器以及分子传感器在内的应用。由于平面各向异性的结构和电子特性,预测在范德华材料表面上具有各向异性传播的极化激元。在这种材料中,可以预期椭圆和双曲平面内极化激元色散(例如,黑磷中的等离子体极化激元),后者导致光状态密度增强和沿着表面的射线状定向传播。然而,到目前为止,在天然材料中观察到各向异性极化激元传播仍然难以捉摸。在这里,我们报告了α-MoO 表面各向异性极化激元的传播,α-MoO 是一种天然的范德华材料。通过对半导体α-MoO 薄片和圆盘的红外纳米成像和纳米光谱学,我们可视化并验证了具有椭圆和双曲平面内色散的声子极化激元,其波长(比相应光子波长小 60 倍)可与石墨烯等离子体极化激元和氮化硼声子极化激元相媲美。从实空间图像中的信号振荡中,我们测量了极化激元幅度的寿命为 8 皮秒,这比室温下的石墨烯等离子体极化激元大 10 多倍。它们也比迄今为止在同位素工程化氮化硼中报道的声子极化激元和低温下的石墨烯等离子体极化激元的最佳值大约四倍。范德华材料中的平面各向异性和超低损耗极化激元可以实现方向性和强的光物质相互作用、纳米尺度的定向能量转移和集成平面光学,应用范围从生物传感到量子纳米光子学。