Suppr超能文献

超越作为局部知识拼凑(层化)的数据。

Going Beyond the Data as the Patching (Sheaving) of Local Knowledge.

作者信息

Phillips Steven

机构信息

Mathematical Neuroinformatics Group, Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.

出版信息

Front Psychol. 2018 Oct 9;9:1926. doi: 10.3389/fpsyg.2018.01926. eCollection 2018.

Abstract

Consistently predicting outcomes in novel situations is colloquially called "going beyond the data," or "generalization." Going beyond the data features in spatial and non-spatial cognition, raising the question of whether such features have a common basis-a kind of systematicity of generalization. Here, we conceptualize this ability as the patching of local knowledge to obtain non-local (global) information. Tracking the passage from local to global properties is the purview of sheaf theory, a branch of mathematics at the nexus of algebra and geometry/topology. Two cognitive domains are examined: (1) learning cue-target patterns that conform to an underlying algebraic rule, and (2) visual attention requiring the integration of space-based feature maps. In both cases, going beyond the data is obtained from a (universal) sheaf theory construction called "sheaving," i.e., the "patching" of local data attached to a topological space to obtain a representation considered as a globally coherent cognitive map. These results are discussed in the context of a previous (category theory) explanation for systematicity, vis-a-vis, categorical universal constructions, along with other cognitive domains where going beyond the data is apparent. Analogous to higher-order function (i.e., a function that takes/returns a function), going beyond the data as a higher-order systematicity property is explained by sheaving, a higher-order (categorical) universal construction.

摘要

在新情境中持续预测结果通俗地称为“超越数据”或“泛化”。在空间和非空间认知中超越数据特征,引发了这样的特征是否有共同基础的问题——一种泛化的系统性。在这里,我们将这种能力概念化为对局部知识的拼接以获得非局部(全局)信息。追踪从局部到全局属性的过程属于层论的范畴,层论是代数与几何/拓扑交叉领域的一个数学分支。我们考察了两个认知领域:(1)学习符合潜在代数规则的线索-目标模式,以及(2)需要整合基于空间的特征图的视觉注意力。在这两种情况下,超越数据都是通过一种称为“层化”的(通用)层论构造实现的,即对附着于拓扑空间的局部数据进行“拼接”,以获得被视为全局连贯认知地图的表示。这些结果是在之前关于系统性的(范畴论)解释的背景下进行讨论的,即范畴通用构造,以及其他明显存在超越数据情况的认知领域。与高阶函数(即接受/返回函数的函数)类似,作为高阶系统性属性的超越数据是通过层化来解释的,层化是一种高阶(范畴)通用构造。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/333f/6189483/6fabe02676fa/fpsyg-09-01926-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验