Suppr超能文献

胸主动脉血流动力学数值模拟的验证:与体内测量结果的比较及随机敏感性分析

Validation of Numerical Simulations of Thoracic Aorta Hemodynamics: Comparison with In Vivo Measurements and Stochastic Sensitivity Analysis.

作者信息

Boccadifuoco Alessandro, Mariotti Alessandro, Capellini Katia, Celi Simona, Salvetti Maria Vittoria

机构信息

Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.

Dipartimento di Ingegneria Civile e Industriale, Università di Pisa, Pisa, Italy.

出版信息

Cardiovasc Eng Technol. 2018 Dec;9(4):688-706. doi: 10.1007/s13239-018-00387-x. Epub 2018 Oct 24.

Abstract

PURPOSE

Computational fluid dynamics (CFD) and 4D-flow magnetic resonance imaging (MRI) are synergically used for the simulation and the analysis of the flow in a patient-specific geometry of a healthy thoracic aorta.

METHODS

CFD simulations are carried out through the open-source code SimVascular. The MRI data are used, first, to provide patient-specific boundary conditions. In particular, the experimentally acquired flow rate waveform is imposed at the inlet, while at the outlets the RCR parameters of the Windkessel model are tuned in order to match the experimentally measured fractions of flow rate exiting each domain outlet during an entire cardiac cycle. Then, the MRI data are used to validate the results of the hemodynamic simulations. As expected, with a rigid-wall model the computed flow rate waveforms at the outlets do not show the time lag respect to the inlet waveform conversely found in MRI data. We therefore evaluate the effect of wall compliance by using a linear elastic model with homogeneous and isotropic properties and changing the value of the Young's modulus. A stochastic analysis based on the polynomial chaos approach is adopted, which allows continuous response surfaces to be obtained in the parameter space starting from a few deterministic simulations.

RESULTS

The flow rate waveform can be accurately reproduced by the compliant simulations in the ascending aorta; on the other hand, in the aortic arch and in the descending aorta, the experimental time delay can be matched with low values of the Young's modulus, close to the average value estimated from experiments. However, by decreasing the Young's modulus the underestimation of the peak flow rate becomes more significant. As for the velocity maps, we found a generally good qualitative agreement of simulations with MRI data. The main difference is that the simulations overestimate the extent of reverse flow regions or predict reverse flow when it is absent in the experimental data. Finally, a significant sensitivity to wall compliance of instantaneous shear stresses during large part of the cardiac cycle period is observed; the variability of the time-averaged wall shear stresses remains however very low.

CONCLUSIONS

In summary, a successful integration of hemodynamic simulations and of MRI data for a patient-specific simulation has been shown. The wall compliance seems to have a significant impact on the numerical predictions; a larger wall elasticity generally improves the agreement with experimental data.

摘要

目的

计算流体动力学(CFD)和四维流磁共振成像(MRI)协同用于在健康胸主动脉的患者特异性几何结构中对血流进行模拟和分析。

方法

通过开源代码SimVascular进行CFD模拟。首先,利用MRI数据提供患者特异性边界条件。具体而言,将实验获取的流速波形施加于入口,而在出口处,调整风箱模型的RCR参数,以匹配在整个心动周期中实验测量的从每个区域出口流出的流速分数。然后,利用MRI数据验证血流动力学模拟结果。正如预期的那样,使用刚性壁模型时,出口处计算得到的流速波形相对于入口波形没有显示出在MRI数据中相反发现的时间延迟。因此,我们通过使用具有均匀和各向同性特性的线性弹性模型并改变杨氏模量的值来评估壁顺应性的影响。采用基于多项式混沌方法的随机分析,这使得从一些确定性模拟开始,能够在参数空间中获得连续响应面。

结果

顺应性模拟能够在升主动脉中准确再现流速波形;另一方面,在主动脉弓和降主动脉中,实验时间延迟可以通过接近实验估计平均值的低杨氏模量值来匹配。然而,随着杨氏模量的降低,峰值流速的低估变得更加显著。至于速度图,我们发现模拟结果与MRI数据在总体上具有良好的定性一致性。主要差异在于,模拟高估了逆流区域的范围,或者在实验数据中不存在逆流时预测出了逆流。最后,在心动周期的大部分时间内观察到瞬时剪应力对壁顺应性具有显著敏感性;然而,时间平均壁剪应力的变异性仍然非常低。

结论

总之,已展示了血流动力学模拟与MRI数据成功整合用于患者特异性模拟。壁顺应性似乎对数值预测有显著影响;更大的壁弹性通常能改善与实验数据的一致性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验