Suppr超能文献

将主动脉弓上血管纳入主动脉统计形状模型:一种新型非刚性配准方法。

Enabling supra-aortic vessels inclusion in statistical shape models of the aorta: a novel non-rigid registration method.

作者信息

Scarpolini Martino Andrea, Mazzoli Marilena, Celi Simona

机构信息

BioCardioLab, Bioengineering Unit, Fondazione Toscana G. Monasterio, Ospedale del Cuore, Massa, Italy.

Department of Industrial Engineering, University of Rome "Tor Vergata", Roma, Italy.

出版信息

Front Physiol. 2023 Aug 10;14:1211461. doi: 10.3389/fphys.2023.1211461. eCollection 2023.

Abstract

Statistical Shape Models (SSMs) are well-established tools for assessing the variability of 3D geometry and for broadening a limited set of shapes. They are widely used in medical imaging due to their ability to model complex geometries and their high efficiency as generative models. The principal step behind these techniques is a registration phase, which, in the case of complex geometries, can be a critical issue due to the correspondence problem, as it necessitates the development of correspondence mapping between shapes. The thoracic aorta, with its high level of morphological complexity, poses a multi-scale deformation problem due to the presence of several branch vessels with varying diameters. Moreover, branch vessels exhibit significant variability in shape, making the correspondence optimization even more challenging. Consequently, existing studies have focused on developing SSMs based only on the main body of the aorta, excluding the supra-aortic vessels from the analysis. In this work, we present a novel non-rigid registration algorithm based on optimizing a differentiable distance function through a modified gradient descent approach. This strategy enables the inclusion of custom, domain-specific constraints in the objective function, which act as landmarks during the registration phase. The algorithm's registration performance was tested and compared to an alternative Statistical Shape modeling framework, and subsequently used for the development of a comprehensive SSM of the thoracic aorta, including the supra-aortic vessels. The developed SSM was further evaluated against the alternative framework in terms of generalisation, specificity, and compactness to assess its effectiveness.

摘要

统计形状模型(SSMs)是用于评估三维几何形状变异性和扩展有限形状集的成熟工具。由于它们能够对复杂几何形状进行建模以及作为生成模型具有高效率,因此在医学成像中被广泛使用。这些技术背后的主要步骤是配准阶段,在复杂几何形状的情况下,由于对应问题,这可能是一个关键问题,因为它需要在形状之间开发对应映射。胸主动脉因其高度的形态复杂性,由于存在多个直径不同的分支血管,会带来多尺度变形问题。此外,分支血管的形状存在显著变异性,使得对应优化更具挑战性。因此,现有研究仅专注于基于主动脉主体开发统计形状模型,在分析中排除了主动脉弓上血管。在这项工作中,我们提出了一种新颖的非刚性配准算法,该算法通过改进的梯度下降方法优化可微距离函数。这种策略能够在目标函数中纳入自定义的、特定领域的约束,这些约束在配准阶段充当地标。测试了该算法的配准性能,并与另一种统计形状建模框架进行比较,随后用于开发包括主动脉弓上血管的胸主动脉综合统计形状模型。根据泛化性、特异性和紧凑性,将开发的统计形状模型与替代框架进行进一步评估,以评估其有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acaa/10450506/923f117e3071/fphys-14-1211461-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验