Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems , University of Stuttgart , D-70569 Stuttgart , Germany.
ACS Appl Mater Interfaces. 2018 Nov 7;10(44):37898-37910. doi: 10.1021/acsami.8b16355. Epub 2018 Oct 29.
Magnetosomes represent magnetic nanoparticles with unprecedented characteristics. Both their crystal morphology and the composition of the enveloping membrane can be manipulated by genetic means, allowing the display of functional moieties on the particle surface. In this study, we explore the generation of a new biomaterial assembly by coupling magnetosomes with tobacco mosaic virus (TMV) particles, both functionalized with complementary recognition sites. TMV consists of single-stranded RNA encapsidated by more than 2100 coat proteins, which enable chemical modification via functional groups. Incubation of EmGFP- or biotin-decorated TMV particles with magnetosomes genetically functionalized with GFP-binding nanobodies or streptavidin, respectively, results in the formation of magnetic, mesoscopic, strand-like biocomposites. TMV facilitates the agglomeration of magnetosomes by providing a scaffold. The size of the TMV-magnetosome mesostrands can be adjusted by varying the TMV-magnetosome particle ratios. The versatility of this novel material combination is furthermore demonstrated by coupling magnetosomes and terminal, 5'-functionalized TMV particles with high molecular precision, which results in "drumstick"-like TMV-magnetosome complexes. In summary, our approaches provide promising strategies for the generation of new biomaterial assemblies that could be used as scaffold for the introduction of further functionalities, and we foresee a broad application potential in the biomedical and biotechnological field.
磁小体是具有独特特性的磁性纳米颗粒。通过遗传手段可以操纵它们的晶体形态和包膜的组成,从而在颗粒表面展示功能性基团。在这项研究中,我们探索了通过将磁小体与烟草花叶病毒(TMV)颗粒偶联来生成新型生物材料组装体的方法,这两种颗粒都具有互补的识别位点。TMV 由单链 RNA 包裹在 2100 多个外壳蛋白中,这些外壳蛋白可以通过功能基团进行化学修饰。用 GFP 结合纳米体或链霉亲和素分别修饰的 EmGFP 或生物素化的 TMV 颗粒与遗传上功能化的 GFP 结合纳米体或链霉亲和素修饰的磁小体孵育,会形成磁性、介观、链状的生物复合材料。TMV 通过提供支架促进磁小体的聚集。通过改变 TMV-磁小体颗粒的比例,可以调整 TMV-磁小体介观链的大小。通过将磁小体和末端 5' 功能化的 TMV 颗粒以高分子精度偶联,进一步证明了这种新型材料组合的多功能性,这导致了“鼓槌”状的 TMV-磁小体复合物。总之,我们的方法为生成新的生物材料组装体提供了有前途的策略,这些组装体可用作引入进一步功能的支架,我们预计在生物医学和生物技术领域有广泛的应用潜力。