Suppr超能文献

一种多功能磁性纳米平台,用于即插即用的功能化:通过 SpyCatcher“点击生物学”对细菌磁小体进行基因可编程货物加载。

A Versatile Magnetic Nanoplatform for Plug-and-Play Functionalization: Genetically Programmable Cargo Loading to Bacterial Magnetosomes by SpyCatcher "Click Biology".

机构信息

Dept. Microbiology, University of Bayreuth, D-95447 Bayreuth, Germany.

出版信息

ACS Nano. 2024 Oct 15;18(41):27974-27987. doi: 10.1021/acsnano.4c05588. Epub 2024 Oct 4.

Abstract

Bacterial magnetosomes ("MAGs") represent a promising class of magnetic iron oxide nanoparticles with exceptional material characteristics and high application potential in the biomedical and biotechnological field. For the surface functionalization of MAGs with different protein cargos, their enveloping membrane can be addressed by genetic means. However, the expression of foreign polypeptides as translational fusion to magnetosome membrane proteins is still laborious and lacks versatility as the generated particles are monospecific and thus restricted to predetermined functions. Utilizing the SpyTag-SpyCatcher (ST-SC) bioconjugate system, we here establish a flexible platform for the targeted nanoassembly of multifunctional MAGs that combines the rapidity of chemical coupling (e.g., by cross-linking reactions) and the unmatched selectivity and controllability of functionalization. MAGs genetically engineered to display either SC- or ST-connectors are shown to efficiently bind a variety of complementary tagged (protein) cargo. Specifically, we cover a broad spectrum of representative functional moieties and foreign cargo (such as enzymes, antibodies, fluorophores, and silica beads) with relevance in biotechnology and biomedicine and demonstrate the interchangeability of the MAGs-adapted ST-SC system. For the controlled generation of artificial shells surrounding the particles, SC-MAGs are effectively coated by protein-corona proteins. The potential of the here-provided toolkit is even more enhanced by using SC-MAGs as an affinity tool for selective protein pulldown and . Overall, this innovative technology turns bacterial MAGs into a flexible magnetic nanoscaffold for the targeted display of virtually unlimited additional functionalities, thereby generating a multitude of magnetic hybrid materials that can be used in many applications.

摘要

细菌磁小体(“MAGs”)是一类有前景的磁性氧化铁纳米颗粒,具有独特的材料特性,在生物医学和生物技术领域具有很高的应用潜力。为了将不同蛋白质 cargos 靶向到 MAGs 表面,可通过遗传手段处理它们的包膜。然而,将外源多肽作为翻译融合物表达到磁小体膜蛋白上仍然很费力,并且缺乏通用性,因为生成的颗粒是单特异性的,因此仅限于预定的功能。利用 SpyTag-SpyCatcher(ST-SC)生物偶联系统,我们在此建立了一个灵活的平台,用于靶向多功能 MAG 的纳米组装,该平台结合了化学偶联的快速性(例如通过交联反应)和功能化的无与伦比的选择性和可控性。展示了显示 SC 或 ST 接头的遗传工程 MAG 能够有效地结合各种互补标记的(蛋白质)货物。具体来说,我们涵盖了具有生物技术和生物医学相关性的广泛的代表性功能部分和外源货物(如酶、抗体、荧光团和硅胶珠),并证明了 MAG 适配的 ST-SC 系统的可互换性。为了控制围绕颗粒的人工壳的生成,SC-MAG 可有效地被蛋白冠蛋白包裹。通过使用 SC-MAG 作为选择性蛋白下拉的亲和工具,该工具包的潜力得到了进一步增强。总的来说,这项创新技术将细菌 MAGs 变成了一种灵活的磁性纳米支架,可用于靶向展示几乎无限的额外功能,从而产生了许多可用于多种应用的磁性杂化材料。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验