Dopilka Andrew, Zhao Ran, Weller J Mark, Bobev Svilen, Peng Xihong, Chan Candace K
Materials Science and Engineering, School for Engineering of Matter, Transport and Energy , Arizona State University , P.O. Box 876106, Tempe , Arizona 85827 , United States.
School of Molecular Sciences , Arizona State University , P.O. Box 871604, Tempe , Arizona 85287 , United States.
ACS Appl Mater Interfaces. 2018 Nov 7;10(44):37981-37993. doi: 10.1021/acsami.8b11509. Epub 2018 Oct 29.
In this work, we investigate the electrochemical properties of BaAl Ge ( y = 0, 4, 8, 12, 16) clathrates prepared by arc-melting. These materials have cage-like structures with large cavity volumes and can also have vacancies on the Ge framework sites, features which may be used to accommodate Li. Herein, a structural, electrochemical, and theoretical investigation is performed to explore these materials as anodes in Li-ion batteries, including analysis of the effect of the Al content and framework vacancies on the observed electrochemical properties. Single-crystal X-ray diffraction (XRD) studies indicate the presence of vacancies at the 6c site of the clathrate framework as the Al content decreases, and the lithiation potentials and capacities are observed to decrease as the degree of Al substitution increases. From XRD, electrochemical, and transmission electron microscopy analysis, we find that all of the clathrate compositions undergo two-phase reactions to form Li-rich amorphous phases. This is different from the behavior observed in Si clathrate analogues, where there is no amorphous phase transition during electrochemical lithiation nor discernible changes to the lattice constant of the bulk structure. From density functional theory calculations, we find that Li insertion into the three framework vacancies in BaGe is energetically favorable, with a calculated lithiation voltage of 0.77 V versus Li/Li. However, the calculated energy barrier for Li diffusion between vacancies and around Ba guest atoms is at least 1.6 eV, which is too high for significant room-temperature diffusion. These results show that framework vacancies in the Ge clathrate structure are unlikely to significantly contribute to lithiation processes unless the Ba guest atoms are absent, but suggest that guest atom vacancies could open diffusion paths for Li, allowing for empty framework positions to be occupied.
在本工作中,我们研究了通过电弧熔炼制备的BaAlGe(y = 0、4、8、12、16)包合物的电化学性质。这些材料具有笼状结构,空腔体积大,并且在Ge骨架位点上也可能存在空位,这些特征可用于容纳Li。在此,进行了结构、电化学和理论研究,以探索这些材料作为锂离子电池负极的性能,包括分析Al含量和骨架空位对观察到的电化学性质的影响。单晶X射线衍射(XRD)研究表明,随着Al含量的降低,包合物骨架的6c位点存在空位,并且随着Al取代程度的增加,锂化电位和容量降低。通过XRD、电化学和透射电子显微镜分析,我们发现所有包合物组成都经历两相反应以形成富锂非晶相。这与在Si包合物类似物中观察到的行为不同,在Si包合物类似物中,电化学锂化过程中没有非晶相转变,并且整体结构的晶格常数也没有明显变化。从密度泛函理论计算中,我们发现Li插入BaGe中的三个骨架空位在能量上是有利的,计算得出的相对于Li/Li的锂化电压为0.77V。然而,计算得出的Li在空位之间以及围绕Ba客体原子扩散的能垒至少为1.6eV,这对于显著的室温扩散来说太高了。这些结果表明,除非没有Ba客体原子,否则Ge包合物结构中的骨架空位不太可能对锂化过程有显著贡献,但表明客体原子空位可以为Li开辟扩散路径,使空的骨架位置被占据。