Suppr超能文献

揭示能量和熵贡献对电荷光生成驱动力的重要性。

Revealing the Importance of Energetic and Entropic Contributions to the Driving Force for Charge Photogeneration.

出版信息

ACS Appl Mater Interfaces. 2018 Nov 21;10(46):39933-39941. doi: 10.1021/acsami.8b12077. Epub 2018 Nov 8.

Abstract

Despite significant recent progress, much about the mechanism for charge photogeneration in organic photovoltaics remains unknown. Here, we use conjugated block copolymers as model systems to examine the effects of energetic and entropic driving forces in organic donor-acceptor materials. The block copolymers are designed such that an electron donor block and an electron acceptor block are covalently linked, embedding a donor-acceptor interface within the molecular structure. This enables model studies in solution where processes occurring between one donor and one acceptor are examined. First, energy levels and dielectric constants that govern the driving force for charge transfer are systematically tuned and charge transfer within individual block copolymer chains is quantified. Results indicate that in isolated chains, a significant driving force of ∼0.3 eV is necessary to facilitate significant exciton dissociation to charge-transfer states. Next, block copolymers are cast into films, allowing for intermolecular interactions and charge delocalization over multiple chains. In the solid state, charge transfer is significantly enhanced relative to isolated block copolymer chains. Using Marcus Theory, we conclude that changes in the energetic driving force alone cannot explain the increased efficiency of exciton dissociation to charge-transfer states in the solid state. This implies that increasing the number of accessible states for charge transfer introduces an entropic driving force that can play an important role in the charge-generation mechanism of organic materials, particularly in systems where the excited state energy level is close to that of the charge-transfer state.

摘要

尽管最近取得了重大进展,但有机光伏电荷光生成的机制仍有许多未知之处。在这里,我们使用共轭嵌段共聚物作为模型系统来研究有机施主-受主材料中能量和熵驱动力的影响。这些嵌段共聚物的设计使得电子给体嵌段和电子受体嵌段通过共价键连接,在分子结构中嵌入施主-受主界面。这使得可以在溶液中进行模型研究,其中可以研究一个给体和一个受体之间发生的过程。首先,系统地调整能级和介电常数,以控制电荷转移的驱动力,并量化单个嵌段共聚物链内的电荷转移。结果表明,在孤立的链中,需要大约 0.3 eV 的显著驱动力来促进显著的激子离解到电荷转移态。接下来,将嵌段共聚物铸造成薄膜,允许分子间相互作用和多个链上的电荷离域。在固态下,电荷转移相对于孤立的嵌段共聚物链显著增强。通过马库斯理论,我们得出结论,仅改变能量驱动力不能解释在固态下激子离解到电荷转移态的效率提高。这意味着增加电荷转移的可及状态的数量会引入一个熵驱动力,这在有机材料的电荷生成机制中可能起着重要作用,特别是在激发态能级接近电荷转移态的系统中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验