Suppr超能文献

调谐单壁碳纳米管异质结中激子解离的驱动力。

Tuning the driving force for exciton dissociation in single-walled carbon nanotube heterojunctions.

机构信息

National Renewable Energy Laboratory, Golden, Colorado 80401, USA.

Department of Physics, University of Colorado, Boulder, Colorado 80309, USA.

出版信息

Nat Chem. 2016 Jun;8(6):603-9. doi: 10.1038/nchem.2496. Epub 2016 Apr 25.

Abstract

Understanding the kinetics and energetics of interfacial electron transfer in molecular systems is crucial for the development of a broad array of technologies, including photovoltaics, solar fuel systems and energy storage. The Marcus formulation for electron transfer relates the thermodynamic driving force and reorganization energy for charge transfer between a given donor/acceptor pair to the kinetics and yield of electron transfer. Here we investigated the influence of the thermodynamic driving force for photoinduced electron transfer (PET) between single-walled carbon nanotubes (SWCNTs) and fullerene derivatives by employing time-resolved microwave conductivity as a sensitive probe of interfacial exciton dissociation. For the first time, we observed the Marcus inverted region (in which driving force exceeds reorganization energy) and quantified the reorganization energy for PET for a model SWCNT/acceptor system. The small reorganization energies (about 130 meV, most of which probably arises from the fullerene acceptors) are beneficial in minimizing energy loss in photoconversion schemes.

摘要

理解界面电子转移的动力学和能量学对于广泛的技术发展至关重要,包括光伏、太阳能燃料系统和储能。电子转移的马库斯公式将给定给体/受体对之间电荷转移的热力学驱动力和重组能与电子转移的动力学和产率联系起来。在这里,我们通过使用时间分辨微波电导率作为界面激子离解的灵敏探针,研究了单壁碳纳米管 (SWCNT) 和富勒烯衍生物之间光诱导电子转移 (PET) 的热力学驱动力的影响。我们首次观察到马库斯反位区(驱动力超过重组能),并定量了模型 SWCNT/受体系统的 PET 重组能。小的重组能(约 130meV,其中大部分可能来自富勒烯受体)有助于最小化光转换方案中的能量损失。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验