Departamento de Recursos Hídricos y Ciencias Ambientales, Universidad de Cuenca, Cuenca, Ecuador; Institute for Landscape Ecology and Resources Management (ILR), Justus Liebig University Giessen, Giessen, Germany; Department of Geography, University of Costa Rica, 2060, San Jose, Costa Rica.
Institute for Landscape Ecology and Resources Management (ILR), Justus Liebig University Giessen, Giessen, Germany; Centre for International Development and Environmental Research (ZEU), Justus Liebig University Giessen, Giessen, Germany.
Sci Total Environ. 2019 Feb 15;651(Pt 1):1613-1626. doi: 10.1016/j.scitotenv.2018.09.189. Epub 2018 Sep 20.
We demonstrated the great value of spatially distributed and temporally high-resolution hydro-chemical data to enhance knowledge about the intra-catchment variability of flow processes and the runoff composition of individual storms in a tropical alpine (Páramo) ecosystem. In this study, water sources (rainfall, spring water, and water from soil layers of Histosols and Andosols) and nested streams were sampled bi-weekly (2013-2014), including three storm high-resolution events (5-240 min). Water samples were analyzed for 14 tracers including electrical conductivity (EC) and rare earth trace elements and used as input to perform End-Member Mixing Analysis (EMMA). End-members identified for the outlet could explain the hydrological behavior of four out of the five tributaries, indicating similar hydro-geochemical processes and geomorphic features within the catchments. The runoff source contributions of the individual sub-catchments varied among (e.g. Andosols ~40% in tributaries and ~25% at the outlet) and within storm events (e.g. Histosols 15% higher in small peak discharge event), indicating a time-variable composition of streamflows. The latter was also reflected by the interaction of different sources and the chronology of flow paths in EMMA-space, evidencing a faster connectivity with hillslopes in the upper sub-catchments compared to the lower sub-catchments. We found counter-clockwise hysteresis patterns of storms in the lower catchments and clockwise hysteresis loops in the upper catchments. The latter bi-directionality can be related to lower slopes, wider riparian areas and the higher proportion of Histosols in the lower catchments compared to the upper sites.
我们展示了空间分布式和时间高分辨率水化学数据的巨大价值,以增强对流域内流动过程和单个风暴径流水组成变异性的认识,该研究针对的是热带高山(高山湿地)生态系统。在这项研究中,每隔两周(2013-2014 年)对水源(雨水、泉水和 Histosols 和 Andosols 土壤层中的水)和嵌套溪流进行采样,包括三次风暴高分辨率事件(5-240 分钟)。对 14 种示踪剂(包括电导率(EC)和稀土微量元素)的水样进行分析,并将其作为输入值,以执行端元混合分析(EMMA)。对出水口的端元进行识别,可以解释五个支流中的四个的水文行为,这表明流域内存在相似的水文地球化学过程和地貌特征。个别子流域的径流水源贡献在(例如,Andosols 在支流中占 40%,在出水口占 25%)和风暴事件内(例如,Histosols 在小峰值排放事件中高 15%)有所不同,这表明径流水的组成随时间变化。这一点也反映在 EMMA 空间中不同源之间的相互作用和流径的时间顺序上,表明与上游子流域相比,与山坡的连通性更快。我们在下游集水区发现了风暴逆时针滞后模式,在上游集水区发现了顺时针滞后环。后者的双向性可能与较低的坡度、较宽的河岸区以及与上游站点相比,下游集水区中 Histosols 所占比例较高有关。