Suppr超能文献

通过机器学习方法预测多药耐药相关蛋白2转运体的抑制剂

Predicting Inhibitors for Multidrug Resistance Associated Protein-2 Transporter by Machine Learning Approach.

作者信息

Kharangarh Sahil, Sandhu Hardeep, Tangadpalliwar Sujit, Garg Prabha

机构信息

Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab-160062, India.

出版信息

Comb Chem High Throughput Screen. 2018;21(8):557-566. doi: 10.2174/1386207321666181024104822.

Abstract

BACKGROUND

The efflux transporter multidrug resistance associated protein-2 belongs to ATP-binding cassette superfamily which plays an important role in multidrug resistance and drugdrug interactions. Efflux transporters are considered to be important targets for increasing the efficacy of drugs and importance of computational study of efflux transporters for predicting substrates, non-substrates, inhibitors and non-inhibitors is well documented. Previous work on predictive models for inhibitors of multidrug resistance associated Protein-2 efflux transporter showed that machine learning methods produced good results.

OBJECTIVE

The aim of the present work was to develop a machine learning predictive model to classify inhibitors and non-inhibitors of multidrug resistance associated protein-2 transporter using a well refined dataset.

METHOD

In this study, the various algorithms of machine learning were used to develop the predictive models i.e. support vector machine, random forest and k-nearest neighbor. The methods like variance threshold, SelectKBest, random forest, and recursive feature elimination were used to select the features generated by PyDPI. A total of 239 molecules consisting of 124 inhibitors and 115 non-inhibitors were used for model development.

RESULTS

The best multidrug resistance associated protein-2 inhibitor model showed prediction accuracies of 0.76, 0.72 and 0.79 for training, 5-fold cross-validation and external sets, respectively.

CONCLUSION

It was observed that support vector machine model built on features selected using recursive feature elimination method shows the best performance. The developed model can be used in the early stages of drug discovery for identifying the inhibitors of multidrug resistance associated protein-2 efflux transporter.

摘要

背景

外排转运体多药耐药相关蛋白2属于ATP结合盒超家族,在多药耐药和药物相互作用中起重要作用。外排转运体被认为是提高药物疗效的重要靶点,关于外排转运体预测底物、非底物、抑制剂和非抑制剂的计算研究的重要性已有充分记载。先前关于多药耐药相关蛋白2外排转运体抑制剂预测模型的研究表明,机器学习方法取得了良好的结果。

目的

本研究旨在利用一个经过精细整理的数据集,开发一种机器学习预测模型,以区分多药耐药相关蛋白2转运体的抑制剂和非抑制剂。

方法

在本研究中,使用了各种机器学习算法来开发预测模型,即支持向量机、随机森林和k近邻算法。采用方差阈值、SelectKBest、随机森林和递归特征消除等方法来选择由PyDPI生成的特征。总共239个分子,其中包括124种抑制剂和115种非抑制剂,用于模型开发。

结果

最佳的多药耐药相关蛋白2抑制剂模型在训练集、5折交叉验证集和外部数据集上的预测准确率分别为0.76、0.72和0.79。

结论

观察到基于递归特征消除方法选择的特征构建的支持向量机模型表现最佳。所开发的模型可用于药物发现的早期阶段,以识别多药耐药相关蛋白2外排转运体的抑制剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验