Bertolini Camilla, Montgomery W I, O'Connor Nessa E
1School of Biological Sciences, Queen's University of Belfast, 97 Lisburn Road, Belfast, BT9 7BL Northern Ireland, UK.
2NIOZ Royal Netherlands Institute for Sea Research, Department of Estuarine and Delta Systems, Utrecht University, PO Box 140, 4401 NT Yerseke, The Netherlands.
Mar Biol. 2018;165(10):163. doi: 10.1007/s00227-018-3426-8. Epub 2018 Oct 4.
Spatially complex habitats provide refuge for prey and mediate many predator-prey interactions. Increasing anthropogenic pressures are eroding such habitats, reducing their complexity and potentially altering ecosystem stability on a global scale. Yet, we have only a rudimentary understanding of how structurally complex habitats create ecological refuges for most ecosystems. Better informed management decisions require an understanding of the mechanisms underpinning the provision of physical refuge and this may be linked to prey size, predator size and predator identity in priority habitats. We tested each of these factors empirically in a model biogenic reef system. Specifically, we tested whether mortality rates of blue mussels () of different sizes differed among: (i) different forms of reef structural distribution (represented as 'clumped', 'patchy' and 'sparse'); (ii) predator species identity (shore crab, and starfish); and (iii) predator size. The survival rate of small mussels was greatest in the clumped experimental habitat and larger predators generally consumed more prey regardless of the structural organisation of treatment. Small mussels were protected from larger but not from larger in the clumped habitats. The distribution pattern of structural objects, therefore, may be considered a useful proxy for reef complexity when assessing predator-prey interactions, and optimal organisations should be considered based on both prey and predator sizes. These findings are essential to understand ecological processes underpinning predation rates in structurally complex habitats and to inform future restoration and ecological engineering practices.
空间复杂的栖息地为猎物提供庇护所,并调节许多捕食者与猎物之间的相互作用。日益增加的人为压力正在侵蚀这些栖息地,降低其复杂性,并可能在全球范围内改变生态系统的稳定性。然而,我们对结构复杂的栖息地如何为大多数生态系统创造生态庇护所只有初步的了解。做出更明智的管理决策需要了解提供物理庇护所的潜在机制,这可能与优先栖息地中的猎物大小、捕食者大小和捕食者种类有关。我们在一个模拟生物礁系统中对这些因素逐一进行了实证测试。具体来说,我们测试了不同大小的蓝贻贝()在以下几种情况下的死亡率是否存在差异:(i)不同形式的礁体结构分布(表示为“聚集型”、“斑块型”和“稀疏型”);(ii)捕食者种类(岸蟹、和海星);以及(iii)捕食者大小。在聚集型实验栖息地中,小贻贝的存活率最高,而且无论处理的结构组织如何,较大的捕食者通常消耗更多的猎物。在聚集型栖息地中,小贻贝受到较大的的保护,但不受较大的的保护。因此,在评估捕食者与猎物的相互作用时,结构物体的分布模式可被视为礁体复杂性的一个有用指标,并且应根据猎物和捕食者的大小来考虑最佳的组织形式。这些发现对于理解结构复杂的栖息地中捕食率的生态过程以及为未来的恢复和生态工程实践提供信息至关重要。