Suppr超能文献

果蝇 quinaria 和 testacea 组中宿主利用进化的系统发育研究。

A phylogenetic examination of host use evolution in the quinaria and testacea groups of Drosophila.

机构信息

Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA.

Department of Genetics, University of Georgia, Athens, GA 30602, USA.

出版信息

Mol Phylogenet Evol. 2019 Jan;130:233-243. doi: 10.1016/j.ympev.2018.10.027. Epub 2018 Oct 23.

Abstract

Adaptive radiations provide an opportunity to examine complex evolutionary processes such as ecological specialization and speciation. While a well-resolved phylogenetic hypothesis is critical to completing such studies, the rapid rates of evolution in these groups can impede phylogenetic studies. Here we study the quinaria and testacea species groups of the immigrans-tripunctata radiation of Drosophila, which represent a recent adaptive radiation and are a developing model system for ecological genetics. We were especially interested in understanding host use evolution in these species. In order to infer a phylogenetic hypothesis for this group we sampled loci from both the nuclear genome and the mitochondrial DNA to develop a dataset of 43 protein-coding loci for these two groups along with their close relatives in the immigrans-tripunctata radiation. We used this dataset to examine their evolutionary relationships along with the evolution of feeding behavior. Our analysis recovers strong support for the monophyly of the testacea but not the quinaria group. Results from our ancestral state reconstruction analysis suggests that the ancestor of the testacea and quinaria groups exhibited mushroom-feeding. Within the quinaria group, we infer that transition to vegetative feeding occurred twice, and that this transition did not coincide with a genome-wide change in the rate of protein evolution.

摘要

适应辐射为研究复杂的进化过程(如生态特化和物种形成)提供了机会。虽然一个解析良好的系统发育假说对于完成此类研究至关重要,但这些群体的快速进化速度会阻碍系统发育研究。在这里,我们研究了果蝇的 immigrans-tripunctata 辐射中的 quinaria 和 testacea 种组,它们代表了最近的适应辐射,并且是生态遗传学的一个新兴模式系统。我们特别感兴趣的是了解这些物种的宿主利用进化。为了推断该群体的系统发育假说,我们从核基因组和线粒体 DNA 中采样了基因座,为这两个组及其 immigrans-tripunctata 辐射中的近亲开发了一个包含 43 个蛋白质编码基因座的数据集。我们使用这个数据集来检查它们的进化关系以及摄食行为的进化。我们的分析强烈支持 testacea 组的单系性,但不支持 quinaria 组。我们的祖先状态重建分析的结果表明,testacea 和 quinaria 组的祖先表现出蘑菇取食。在 quinaria 组内,我们推断出两次发生了向植物性摄食的转变,并且这种转变与蛋白质进化速率的全基因组变化没有重合。

相似文献

1
A phylogenetic examination of host use evolution in the quinaria and testacea groups of Drosophila.
Mol Phylogenet Evol. 2019 Jan;130:233-243. doi: 10.1016/j.ympev.2018.10.027. Epub 2018 Oct 23.
4
Investigating the phylogenetic history of toxin tolerance in mushroom-feeding .
Ecol Evol. 2023 Dec 13;13(12):e10736. doi: 10.1002/ece3.10736. eCollection 2023 Dec.
5
Molecular phylogeny of the Drosophila tripunctata and closely related species groups (Diptera: Drosophilidae).
Mol Phylogenet Evol. 2009 Jun;51(3):595-600. doi: 10.1016/j.ympev.2009.02.022. Epub 2009 Mar 11.
7
PHYLOGENETIC ANALYSIS OF BREEDING SITE USE AND α-AMANITIN TOLERANCE WITHIN THE DROSOPHILA QUINARIA SPECIES GROUP.
Evolution. 1996 Dec;50(6):2328-2337. doi: 10.1111/j.1558-5646.1996.tb03620.x.
8
Phylogeny of the Genus .
Genetics. 2018 May;209(1):1-25. doi: 10.1534/genetics.117.300583.
9
Phylogenetic and ecological relationships of the Hawaiian Drosophila inferred by mitochondrial DNA analysis.
Mol Phylogenet Evol. 2011 Feb;58(2):244-56. doi: 10.1016/j.ympev.2010.11.022. Epub 2010 Dec 7.
10
Skeleton phylogeny reconstructed with transcriptomes for the tribe Drosophilini (Diptera: Drosophilidae).
Mol Phylogenet Evol. 2024 Feb;191:107978. doi: 10.1016/j.ympev.2023.107978. Epub 2023 Nov 25.

引用本文的文献

1
The genome sequence of a drosophilid fruit fly, von Roser 1840.
Wellcome Open Res. 2024 Jul 10;9:365. doi: 10.12688/wellcomeopenres.22584.1. eCollection 2024.
2
The genome sequence of the drosophilid fruit fly, (Meigen, 1830).
Wellcome Open Res. 2024 Feb 19;9:63. doi: 10.12688/wellcomeopenres.20634.1. eCollection 2024.
3
Examining the associations between a generalist feeder and a highly toxic host.
Ecol Evol. 2024 Feb 21;14(2):e11035. doi: 10.1002/ece3.11035. eCollection 2024 Feb.
4
Investigating the phylogenetic history of toxin tolerance in mushroom-feeding .
Ecol Evol. 2023 Dec 13;13(12):e10736. doi: 10.1002/ece3.10736. eCollection 2023 Dec.
5
The regulation of a pigmentation gene in the formation of complex color patterns in Drosophila abdomens.
PLoS One. 2022 Dec 19;17(12):e0279061. doi: 10.1371/journal.pone.0279061. eCollection 2022.
7
Inter- and intraspecific variation in mycotoxin tolerance: A study of four species.
Ecol Evol. 2022 Jul 24;12(7):e9126. doi: 10.1002/ece3.9126. eCollection 2022 Jul.
10
Evolution of wing pigmentation in Drosophila: Diversity, physiological regulation, and cis-regulatory evolution.
Dev Growth Differ. 2020 Jun;62(5):269-278. doi: 10.1111/dgd.12661. Epub 2020 Apr 4.

本文引用的文献

1
Phylogeny of the Genus .
Genetics. 2018 May;209(1):1-25. doi: 10.1534/genetics.117.300583.
2
Patterns of reproductive isolation in the complex: can reinforced premating isolation cascade to other species?
Curr Zool. 2016 Apr;62(2):183-191. doi: 10.1093/cz/zow005. Epub 2016 Mar 3.
3
The global impact of Wolbachia on mitochondrial diversity and evolution.
J Evol Biol. 2017 Dec;30(12):2204-2210. doi: 10.1111/jeb.13186. Epub 2017 Oct 23.
4
Why Concatenation Fails Near the Anomaly Zone.
Syst Biol. 2018 Jan 1;67(1):158-169. doi: 10.1093/sysbio/syx063.
5
Minimum variance rooting of phylogenetic trees and implications for species tree reconstruction.
PLoS One. 2017 Aug 11;12(8):e0182238. doi: 10.1371/journal.pone.0182238. eCollection 2017.
6
EVOLUTION OF FOOD PREFERENCES IN FUNGUS-FEEDING DROSOPHILA: AN ECOLOGICAL STUDY.
Evolution. 1980 Sep;34(5):1009-1018. doi: 10.1111/j.1558-5646.1980.tb04040.x.
7
PATTERNS OF SPECIATION IN DROSOPHILA.
Evolution. 1989 Mar;43(2):362-381. doi: 10.1111/j.1558-5646.1989.tb04233.x.
8
PHYLOGENETIC ANALYSIS OF BREEDING SITE USE AND α-AMANITIN TOLERANCE WITHIN THE DROSOPHILA QUINARIA SPECIES GROUP.
Evolution. 1996 Dec;50(6):2328-2337. doi: 10.1111/j.1558-5646.1996.tb03620.x.
9
WOLBACHIA AND THE EVOLUTION OF REPRODUCTIVE ISOLATION BETWEEN DROSOPHILA RECENS AND DROSOPHILA SUBQUINARIA.
Evolution. 1999 Aug;53(4):1157-1164. doi: 10.1111/j.1558-5646.1999.tb04529.x.
10
SUPPRESSION OF SEX-RATIO MEIOTIC DRIVE AND THE MAINTENANCE OF Y-CHROMOSOME POLYMORPHISM IN DROSOPHILA.
Evolution. 1999 Feb;53(1):164-174. doi: 10.1111/j.1558-5646.1999.tb05342.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验