Heidelberg University Hospital, INF 400, D-69120 Heidelberg, Germany; German Cancer Research Center, INF 280, D-69120 Heidelberg, Germany.
Heidelberg University Hospital, INF 400, D-69120 Heidelberg, Germany; German Cancer Research Center, INF 280, D-69120 Heidelberg, Germany; Heidelberg University, Faculty of Physics and Astronomy, INF 227, D-69120 Heidelberg, Germany.
J Magn Reson. 2018 Dec;297:61-75. doi: 10.1016/j.jmr.2018.10.001. Epub 2018 Oct 4.
Myelin sheath microstructure and composition produce MR signal decay characteristics that can be used to evaluate status and outcome of demyelinating disease. We extend a recently proposed model of neuronal magnetic susceptibility, that accounts for both the structural and inherent anisotropy of the myelin sheath, by including the whole dynamic range of diffusion effects. The respective Bloch-Torrey equation for local spin dephasing is solved with a uniformly convergent perturbation expansion method, and the resulting magnetization decay is validated with a numerical solution based on a finite difference method. We show that a variation of diffusion strengths can lead to substantially different MR signal decay curves. Our results may be used to adjust or control simulations for water diffusion in neuronal structures.
髓鞘的微观结构和组成产生了磁共振信号衰减的特征,可用于评估脱髓鞘疾病的状况和结果。我们扩展了最近提出的神经元磁化率模型,该模型考虑了髓鞘的结构和固有各向异性,并包括了扩散效应的整个动态范围。局部自旋去相位的相应 Bloch-Torrey 方程通过一致收敛的微扰展开方法求解,并且基于有限差分方法的数值解验证了得到的磁化率衰减。我们表明,扩散强度的变化可以导致磁共振信号衰减曲线的显著不同。我们的结果可用于调整或控制神经元结构中水分子扩散的模拟。