Institute of Ecology and Geography, Siberian Federal University, Krasnoyarsk 660041, Russia; State Natural Reserve 'Stolby', Kar'ernaya 26A, Krasnoyarsk 660006, Russia.
Department of Geography, University of Cambridge, CB2 3EN, UK; Sukachev Institute of Forest SB RAS, Akademgorodok, Krasnoyarsk, 660036, Russia; Institute of Ecology and Geography, Siberian Federal University, Krasnoyarsk 660041, Russia.
Sci Total Environ. 2019 Feb 20;652:314-319. doi: 10.1016/j.scitotenv.2018.10.124. Epub 2018 Oct 10.
Although it has been recognized that rising temperatures and shifts in the hydrological cycle affect the depth of the seasonally thawing upper permafrost stratum, it remains unclear to what extent the frequency and intensity of wildfires, and subsequent changes in vegetation cover, influence the soil active layer on different spatiotemporal scales. Here, we use ring width measurements of the subterranean stem part of 15 larch trees from a Sphagnum bog site in Central Siberia to reconstruct long-term changes in the thickness of the active layer since the last wildfire occurred in 1899. Our approach reveals a three-step feedback loop between above- and belowground ecosystem components. After all vegetation is burned, direct atmospheric heat penetration over the first ~20 years caused thawing of the upper permafrost stratum. The slow recovery of the insulating ground vegetation reverses the process and initiates a gradual decrease of the active layer thickness. Due to the continuous spreading and thickening of the peat layer during the last decades, the upper permafrost horizon has increased by 0.52 cm/year. This study demonstrates the strength of annually resolved and absolutely dated tree-ring series to reconstruct the effects of historical wildfires on the functioning and productivity of boreal forest ecosystems at multi-decadal to centennial time-scale. In so doing, we show how complex interactions of above- and belowground components translate into successive changes in the active permafrost stratum. Our results are particularly relevant for improving long-term estimates of the global carbon cycle that strongly depends on the source and sink behavior of the boreal forest zone.
尽管人们已经认识到,气温上升和水文循环的变化会影响季节性融化的上层永冻层的深度,但目前尚不清楚野火的频率和强度,以及随后植被覆盖的变化,在不同的时空尺度上对土壤活跃层会产生多大的影响。在这里,我们利用来自西伯利亚中部沼泽地的 15 棵落叶松地下茎部分的年轮测量数据,重建了自 1899 年最后一次野火发生以来活跃层厚度的长期变化。我们的方法揭示了地上和地下生态系统成分之间的三步骤反馈循环。在所有植被被烧毁后,直接穿透大气的热量在最初的~20 年内导致上层永冻层融化。绝缘地面植被的缓慢恢复会逆转这一过程,并引发活跃层厚度的逐渐减少。由于过去几十年中泥炭层的不断扩散和增厚,上层永冻层的高度每年增加 0.52 厘米。本研究表明,每年解析和绝对日期树木年轮序列的强度,可用于重建历史野火对北方森林生态系统功能和生产力的影响,时间跨度可达数十年至百年。通过这样做,我们展示了地上和地下成分的复杂相互作用如何转化为活跃永冻层的连续变化。我们的研究结果对于改进对全球碳循环的长期估计特别重要,因为全球碳循环强烈依赖于北方森林带的源汇行为。