Rupp Markus, Merboth Felix, Daghma Diaa Eldin, Biehl Christoph, El Khassawna Thaqif, Heiß Christian
Klinik und Poliklinik für Unfall-, Hand- und Wiederherstellungschirurgie, Operative Notaufnahme, Universitätsklinikum Gießen und Marburg, Standort Gießen.
Labor für Experimentelle Unfallchirurgie, Justus-Liebig-Universität Gießen.
Z Orthop Unfall. 2019 Apr;157(2):154-163. doi: 10.1055/a-0658-5922. Epub 2018 Oct 26.
For a long time, osteocytes were regarded as passive bystanders of bone metabolism. Bone remodeling was considered to be an interplay between bone forming osteoblasts and bone degrading osteoclasts. However, the dogma of osteocytes as bystanders within the bone has changed fundamentally since the turn of the millenium. Rather than being silent bystanders, osteocytes are the master cells of bone metabolism. To illustrate the central role of osteocytes, we performed a selective literature research in PubMed and Google Scholar using the search terms "osteocyte", "fracture healing", "bone healing", "bone remodeling", "bone metabolism", "sclerostin", "RANKL/OPG", "Wnt signaling pathway" and "FGF23". We included German and English clinical and preclinical studies as well as literature reviews. Osteocytes develop out of osteoblasts and are the key player in bone metabolism. They build a network within bone and make up 90 - 95% of all bone cells. In contrast to osteoblasts and osteoclasts, osteocytes can reach the age of the organism itself. Their morphology - with its dendritic connection through nexus - forms the perfect basis of osteocyte function. Besides the role as mechanosensor in bone, osteocytes control osteoblasts via sclerostin and osteoclasts via the RANK/RANKL/OPG pathway. Bone mineralisation is controlled by directing local phosphate concentrations. The systemic phosphate levels are regulated in interaction with the kidneys by the hormone FGF23. Understanding the role of osteocytes promises better therapies in clinical practice. Sclerostin antibodies and denusomab, an OPG agonist, are already established for clinical application in osteoporosis therapy. Antibodies against FGF23 or its receptors are used in preclinical and clinical trials. Bortezomib, an antibody which improves vitality of osteocytes, is already used for multiple myeloma therapy. For orthopaedic surgery, understanding the role of osteocytes promises new therapeutic approaches in future. Improvement in osseous integration of metallic implants and medical treatment of disturbed fracture healing are future fields in which therapies may be established by manipulating osteocytes.
长期以来,骨细胞一直被视为骨代谢的被动旁观者。骨重塑被认为是成骨细胞与破骨细胞之间的相互作用。然而,自千禧年之交以来,骨细胞作为骨内旁观者的教条已发生了根本性改变。骨细胞并非沉默的旁观者,而是骨代谢的主导细胞。为了阐明骨细胞的核心作用,我们在PubMed和谷歌学术上进行了选择性文献检索,使用的检索词为“骨细胞”“骨折愈合”“骨愈合”“骨重塑”“骨代谢”“硬化蛋白”“RANKL/OPG”“Wnt信号通路”和“FGF23”。我们纳入了德语和英语的临床及临床前研究以及文献综述。骨细胞由成骨细胞发育而来,是骨代谢的关键参与者。它们在骨内构建网络,占所有骨细胞的90 - 95%。与成骨细胞和破骨细胞不同,骨细胞可以达到生物体本身的寿命。其形态——通过连接子形成树突状连接——构成了骨细胞功能的完美基础。除了作为骨中的机械传感器发挥作用外,骨细胞还通过硬化蛋白控制成骨细胞,并通过RANK/RANKL/OPG途径控制破骨细胞。骨矿化通过调节局部磷酸盐浓度来控制。全身性磷酸盐水平通过激素FGF23与肾脏相互作用进行调节。了解骨细胞的作用有望在临床实践中带来更好的治疗方法。硬化蛋白抗体和地诺单抗(一种OPG激动剂)已被确立用于骨质疏松症治疗的临床应用。针对FGF23或其受体的抗体正在进行临床前和临床试验。硼替佐米是一种可提高骨细胞活力的抗体,已用于多发性骨髓瘤治疗。对于骨科手术而言,了解骨细胞的作用有望在未来带来新的治疗方法。改善金属植入物的骨整合以及治疗骨折愈合不良是未来可能通过操纵骨细胞建立治疗方法的领域。